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A model for quantum communication

We consider a model for quantum communication originally
described by Bose (2003). Bose describes a type of quantum wire
for transferring information, and proposes it as a simple quantum
bus within a quantum computer.

Setup: We have an undirected graph on n vertices – vertices
represent spins, and edges connect spins that interact. Select two
vertices, a sender (vertex s) and a receiver (vertex r). A quantum
state is input at vertex s. By engineering physical couplings
between the spins, the spins can be made to interact with each
other. After a time t has elapsed, the unknown state is
communicated to vertex r , where it’s read out, and is, we hope,
close to the input state. The graph–theoretic distance from s to r
(i.e. the number of edges on a shortest path from s to r) is a
proxy for the physical distance travelled along our quantum wire.
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Fidelity

The quality of the communication is measured by the fidelity,
which a number between 0 and 1. The fidelity at time t, f (t),
measures the similarity between the sending state and the receiving
state: f (t) = 1 corresponds to exact communication of the state,
f (t) near to zero corresponds to poor communication.

Under certain reasonable physical hypotheses (uniform coupling on
an unmodulated chain with XY Hamiltonian), the dynamics of the
communication are described by a continuous-time quantum walk
on the unweighted graph modeling the network.
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Fidelity for mathematicians

Suppose that we have a graph G on vertices labelled 1, . . . , n. The
adjacency matrix for G , say A, is the n × n (0, 1) matrix with
ap,q = 1 if p 6= q and vertices p and q are adjacent, and ap,q = 0
otherwise.

For a graph with adjacency matrix A, sender vertex s and receiver
vertex r , the fidelity at time t is given by f (t) = |exp(itA)s,r |. It is
straightforward to show that for any t,

∑n
r=1 |exp(itA)s,r |2 = 1.

Hence, the quantity ps,r (t) ≡ f (t)2 can be thought of as the
probability that a quantum walk on the graph starting vertex s
arrives at vertex r at time t.
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A variant

The Laplacian matrix for a graph G is given by L = D − A, where
A is the adjacency matrix of G and D is the diagonal matrix of row
sums of A.

Under a modification of our earlier hypothesis – XX dynamics
instead of XY dynamics – then the fidelity at time t is given by
f̂ (t) = |exp(itL)s,r |. As before, p̂s,r (t) ≡ f̂ (t)2 is the probability
that a (different) quantum walk on the graph starting vertex s
arrives at vertex r at time t.
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Perfect state transfer

Suppose that at some time t0 we have ps,r (t0) = 1 (or
alternatively, p̂s,r (t0) = 1). When this occurs we say that there is
perfect state transfer from vertex s to vertex r at time t0.

Example 1: Suppose that d ∈ N, and consider the d–cube:
vertices are the (0, 1)–vectors in Rd , with two vertices adjacent
precisely when the corresponding vectors differ in exactly one
position. For XY (i.e. adjacency matrix) dynamics, it is
straightforward to show that for the d–cube, at time t0 = π

2 , there
is perfect state transfer between any two vertices at distance d .

Example 2: The threshold graphs are well–studied and highly
structured and are constructed inductively via a sequence of unions
or joins with isolated vertices. There is a subfamily of threshold
graphs for which, using XX (i.e. Laplacian matrix) dynamics, there
is PST at time t0 = π

2 between a particular pair of vertices.
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ps,r(t), t ∈ [0, π] for the 2–cube and the 5–cube
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p̂s,r(t), t ∈ [0, π] for two threshold graphs on 16 vertices

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Steve Kirkland Sensitivity Analysis for PST



Background and Motivation
Sensitivity Analysis for Readout Time
Sensitivity Analysis for Edge Weights

Two potential implementation problems

There are by now plenty of papers that construct graphs with PST.
For example, Bose’s original paper has more than 800 citations,
and many of those citing papers identify new families of graphs
with PST.

With so many PST graphs to choose from, perhaps other
considerations should be brought to bear in selecting among the
graphs with PST.

Question 1: What if my watch doesn’t work? How sensitive is
ps,r (t) to the value of t in a neighbourhood of t0?

Question 2: What if one of my magnets doesn’t work? How
sensitive is ps,r (t0) to small changes in the weights of the edges?
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A handy fact

Let M be a symmetric matrix of order n, (M will eventually be
taken to be the adjacency matrix or the Laplacian matrix, as
needed) and suppose that M = VΛV T , where Λ is a diagonal
matrix of eigenvalues, and V is a corresponding orthogonal matrix
whose columns are eigenvectors.
Set U(t) = exp(itM) and note that |U(t)s,r |2 = |eTs U(t)er |2 =
|eTs Vexp(itΛ)V T er |2 ≤ ||eTs Vexp(itΛ)||2||V T er ||2 ≤ 1.
(Cauchy–Schwarz.)

In particular, if |U(t0)s,r |2 = 1 then necessarily there is a complex
number γ such that eTr V = γeTs Vexp(itΛ); necessarily |γ| = 1.
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|eTs Vexp(itΛ)V T er |2 ≤ ||eTs Vexp(itΛ)||2||V T er ||2 ≤ 1.
(Cauchy–Schwarz.)

In particular, if |U(t0)s,r |2 = 1 then necessarily there is a complex
number γ such that eTr V = γeTs Vexp(itΛ); necessarily |γ| = 1.
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Derivatives with respect to readout time

For each k ∈ N, let w(k) denote the (s, s) entry in Mk .

Using the handy fact, it’s straightforward to see that
dkU(t)s,r

dtk
|t0 =

(i)keTs VΛkexp(it0Λ)V T er = γ(i)keTs VΛkV T es = γ(i)kw(k).

We then get the following result for the adjacency matrix (XY
dynamics).

Theorem

Let G be a graph on n vertices, and suppose that ps,r (t0) = 1. Fix

k ∈ N. If k is odd, then
dkps,r (t)

dtk
|t0 = 0. If k is even, then

dkps,r (t)
dtk

|t0 = (−1)(k mod 4)/2
∑k

j=0(−1)j
(k
j

)
w(j)w(k − j).

For the Laplacian version (XX dynamics), add hats.
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Low order derivatives

In particular, we learn that if we have PST from s to t at time t0,

then
dps,r (t)

dt |t0 = 0, (no points), and that
d2ps,r (t)

dt2
|t0 = −2w(2).

This last helps to explain the earlier figures with the two cubes. For
the 2–cube, −2w(2) = −4 and for the 5–cube, −2w(2) = −10.

We also get insight into the figure for the two threshold graphs.
For one of those we have −2ŵ(2) = −60 and for the other we
have −2ŵ(2) = −420.

So, when choosing among graphs with PST, we might want to
take values of w(2) or ŵ(2) into consideration.
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Taylor’s theorem with remainder

Suppose that we have PST from s to r at time t0, and suppose
that the adjacency matrix has spectral radius ρ. Some simple

estimates yield the fact that for any t, |d
jps,r (t)
dt j

| ≤ 2j+1ρj . Then for
any k ∈ N, we have

ps,r (t0 + h) =

1 +
k∑

j=0

h2j

(2j)!
(−1)(j mod 2)

{
2j∑

m=0

(−1)m
(

2j

m

)
w(m)w(2j −m)

}

+R2k+2
h2k+2

(2k + 2)!
,

where |R2k+2| ≤ 2(2ρ)2k+2.

In view of the above, we might take a special interest in graphs
with PST for which ρ is not too large. For the Laplacian case, add
hats as needed.
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p̂s,r(
π
2 ) for a particular threshold graph on 8 vertices, with

edge weights perturbed by x ∈ [−0.5, 0.5]
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Some analysis

Let G be a graph with adjacency matrix A, and select a pair of
indices j , k. Set E = eje

T
k + eke

T
j , and let A(x) = A + xE , which

is the adjacency matrix of the weighted graph formed from G by
weighting the edge between vertices k and j with the value ak,j + x .

Let L be the Laplacian matrix of G and Ê = (ej − ek)(ej − ek)T ,

and set L(x) = L + xÊ . Then L(x) is the Laplacian matrix of the
weighted graph formed from G by weighting the edge between
vertices k and j with the value −lk,j + x .

Fact: There is neighbourhood of 0, an orthogonal matrix V (x),
and a diagonal matrix Λ(x), such that for each x in that
neighbourhood, V (x) and Λ(x) are analytic in x and
A(x) = V (x)Λ(x)V (x)T . Similarly, there is an orthogonal matrix
V̂ (x) and a diagonal matrix Λ̂(x), both differentiable in x on a
neighbourhood of 0 such that L(x) = V̂ (x)Λ̂(x)V̂ (x)T .
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Low order derivatives with respect to an edge weight

Suppose that our graph G has (adjacency) PST at time t0, and let
q(x) denote ps,r (t0) for the quantum walk on the weighted graph
with adjacency matrix A(x). That is, we’re perturbing the weight
of the edge between k and j by x , and looking at the probability of
starting from s and arriving at r at time t0 as a function of x ,
Since q(0) = 1 is a local maximum, evidently q′(0) = 0. Again, no
points.

Theorem

Suppose that γ = α + iβ. Then

q′′(0) =−2t20{eTs V (0)(Λ′(0))2V (0)T es − (eTs V (0)Λ′(0)V (0)T es)2}
−2{eTs V ′(0)(V ′(0))T es + eTr V ′(0)(V ′(0))T er

−2eTs V ′(0)(α cos(t0Λ) + β sin(t0Λ))(V ′(0))T er}.
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Remarks on q′′(0)

1. It is straightforward to show that both of the terms in braces in
the preceding theorem are nonnegative.
2. To cover the Laplacian (XX) case, add hats as needed.
3. There is an algorithm for finding V (0),V ′(0) and Λ′(0).
Construct V (0) by considering eigenvectors that are in the null
space of E , then taking certain linear combinations of those that
aren’t. The entries in Λ′(0) can be found from V (0). The columns
of V ′(0) involve expressions of the form (λI − A)†EV (0)em, where
λ is an eigenvalue with corresponding eigenvector V (0)em.
4. There is an analogous algorithm for finding V̂ (0), V̂ ′(0) and
Λ̂′(0). It’s actually more straightforward than the one in 4 above.
5. It’s possible to produce an upper bound on |q′′(0)| in terms of
the quantity max 1

|λa−λb| , where the maximum is taken over

distinct eigenvalues λa, λb of A (or L). This may help to guide the
choice of graphs exhibiting PST.
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Example revisited

We saw a figure for a threshold graph on 8 vertices, and three
curves corresponding to perturbation of the weights of the edge
1− 2, the edge 1− 3, and the edge 3− 4.

Using the preceding theorem, we can compute q′′(0) with respect
to each edge, and obtain the following:
for 1− 2, q′′(0) = −π2

2 ;

for 1− 3, q′′(0) = −π2+8
8 ;

for 3− 4, q′′(0) = 0.
These observations fit with what we saw in the corresponding
curves.
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Final thoughts

Since V (x) and Λ(x) are analytic in a neighbourood of 0, higher
order derivatives of q are available. However, the expressions
become uglier with the number of derivatives taken.

The results on readout time suggest that sparse graphs with PST
will offer some forgiveness for small errors in readout time.

If we have a graph in hand exhibiting PST, the results on the
second derivatives of ps,r with respect to the various edge weights
let us know which edges exert more influence on the fidelity. This
might help to inform the implementation of the corresponding
quantum walk.
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