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Let P = [pij] be the transition matrix of an irreducible, 
discrete time Markov chain (MC) {Xn} (n ≥ 0) with finite 
state space  S = {1, 2,…, m}. 
  

1. Introduction 

  i.e.  pij = P{Xn = j Xn−1 = i} for all i, j  ∈ S.

  

We are interested in developing efficient ways of finding
three key properties of such chains using perturbations:

(i) the stationary probabilites {π j }, (1≤ j ≤ m).

(ii) the mean first passage times {mij },(1≤ i, j ≤ m).

(iii) the group inverse of I −P, A#.



  
  
 
 

  
 
 

   

2. Stationary distributions 

Let  πT = (π1, π2, . . . , πm ) be the stationary prob. vector 
of the Markov chain.  

    

We need to solve π j = π ii=1

m∑ pij  with π ii=1

m∑ = 1,

i.e.                        π T (I – P) =  0T  with π Te = 1.



	

 

    
 
 

  3. Mean first passage times 
        

  

Let Tij  be the first passage time RV from state i  to state j, 

i.e.Tij = min {n ≥  1 such that Xn =  j  given that X0 = i}.

Tii  is the first return to state i.

Let mij = E[Tij X0 = i ], the mean first passage time from 

state i   to state j. 



  

   The mean first passage times 

                       

   

Let M = [mij ]  be the matrix of mean first passage times

It is well known that
                          mij = 1+ pik

k  ≠ j
∑ mkj ,

with mjj = 1 π j .

M  satisfies the matrix equation
                         (I −P)M = E −PD,

where E  = [1] = eeT , and    

D = Md = [δ ijmij ] =(Πd )−1  (with Π = eπT ).

       



   4. Generalized matrix inverses 
 

A generalized inverse of a matrix A is any matrix A– 

such that   
 
                          AA– A = A . 
 

 A–  is a “one condition” g-inverse 
 

      A–   is an “equation solving” g-inverse. 
 

  
  
  



5. Solving systems of linear equations 
 A necessary and sufficient condition for 

 
    AXB = C 

 
 to have a solution is 

 
    AA– CB– B = C. 

 
 If this consistency condition is satisfied,  
 the general solution is given by 

 
   X = A–CB– + W – A–AWBB– 

 
 where W is an arbitrary matrix.  

                                                  (Penrose, 1955), (Rao,1955) 

  
  
  



     6. The group inverse 

Let A be a square matrix with real elements, such that 
        rank(A) = rank(A2).   
 
        Then the matrix A# which satisfies 
        
        Condition 1:     AA# A = A 

 Condition 2:   A# AA#  = A#  
 Condition 5:  AA#  = A# A 

 
exists, is unique, and is called the “group inverse” of A . 
 
i.e.  A# is a 1-condition g-inverse with 2 additional conditions. 

  
  
  



 7. G-inverses of Markovian kernels  

(Hunter, 1982) 

   

Let P  be the transition matrix of a finite irreducible           

Markov chain with stationary probability vector πT .

Let eT = (1, 1, …, 1) and t  and u  be any vectors.

   I −P + tuT  is non-singular ⇔  π Tt ≠ 0 and uTe ≠ 0.

   

π Tt ≠ 0 and uTe ≠ 0 ⇒  

                   [I −P + tuT ]−1 is a g-inverse of I −P. 

   

If G is any g-inverse of I −P, then ∃ vectors f , g, t  

and u  with  π Tt ≠ 0 and uTe ≠ 0  such that 

              G = [I −P + tuT ]−1 + ef T + gπ T .

  

  

  



 Parameters of G-inverses of I – P 
 
 
 

(Hunter, 1988)    

If G is any g-inverse of I −P  with stat prob vector π T

then G can be uniquely expressed in parametric form

          G ≡ G(α ,β,γ ) = [I −P +αβT ]−1 + γ eπ T

where α ,β  and γ  involve 2m −1 parameters 

with the properties π Tα = 1 and βTe = 1.
Given any G the parameters can be found as follows:
Let A ≡ I − (I −P)G and B = I −G(I −P) then

A = απ T  and  B = eβT  so that  α = Ae  and βT = π TB.

Further Gα = ( γ +1)e  and βTG = ( γ +1)π T

with γ +1= π TGα = βTGe = βTGα.



  
 

   

G ∈A{1, 2} ⇔γ = −1,
G ∈A{1, 3} ⇔α = π ,

G ∈A{1, 4} ⇔ β = e eTe = e m,
G ∈A{1, 5a} ⇔α = e ⇔Ge = ge  for some g,

G ∈A{1, 5b} ⇔ β = π ⇔ π TG = hπ T  for some h,
G ∈A{1, 5} ⇔α = e, β = π ,
G ∈A{1, 2, 5} ⇔α = e, β = π , γ = −1.



Group inverse of I – P 

   

The group inverse of I −P   has the form 

 A# =  [I −P + eπ T ]–1 − eπ T = [I −P +Π ]–1 −Π     (Meyer, 1975)

Special properties: 

           (i)    (I −P)A# = I − eπ T .

           (ii)   A#(I −P) = I − eπ T .

           (iii)  A#e = 0.

           (iv)  π T A# = 0T.

Any matrix A#  satisfying (i)− (iv) is the group inverse of I −P.



 
    

 
 

   8. Solving for the stationary distribution 

   

If G = [I −P  + tuT ]−1 where u, t  such that  uTe ≠ 0, π Tt ≠ 0,

                       π T = uTG
uTGe

.

(Paige,Styan,Wachter,1975), (Kemeny,1981), (Hunter,1982)



9. Solving for mean first passage times 

    

(i)  If G is any g-inverse of I −P, then
  M = [GΠ −E(GΠ )d + I – G +EGd ]D.             (Hunter, 1982)
(ii) If Ge = ge  for some g ⇔G ∈A{1,5a}
                            ⇔  M =  [I −G +EGd ]D.       (Hunter,2013)
(iii) Let G be any g-inverse of I −P  
    then H = G(I −Π) is a g-inverse of I −P  with He = 0
     and  M =  [I −H +EHd ]D.

In particular, M =  [I − A# +EAd
# ]D, so that if A# = [aij

# ],

   mjj =
1
π j

   and    mij =
ajj

# − aij
#

π j

, (i ≠ j).                              



10. Solving for the group inverse 

    

A#  can be found from any g-inverse of I −P :

If G is any g-inverse of I −P,  and H = G(I −Π )  then
K = (I −Π )H = (I −Π )G(I −Π )  is a g-inverse of I −P  

with π TK = 0T and Ke = 0.

In fact,  K = A#, the group inverse of I −P.



10. Solving for the group inverse 

  

Alternatively, A#  can be found from the mij :

Let τ j ≡ π kmkjk=1

m∑ = π kmkjk≠ j∑ +1, 

and let A# = [aij
# ], then

     aij
# =

π j (τ j −1), i = j,

π j (τ j −1−mij ) = ajj
# − π jmij , i ≠ j. 

⎧
⎨
⎪

⎩⎪

                          (Ben-Ari, Neumann, 2012),(Hunter, 2013).



  

Computational considerations  
 

  

          

Two relevant papers:  
[1] (Heyman and O’Leary,1995) (“Computations with 
      Markov chains” (2nd International Workshop on MC’s) 
[2] (Heyman and Reeves,1989) (ORSA J Computing) 
 
 
 
 

  [1]:  “deriving means … of first passage times from … the 
group inverse A# leads to a significant inaccuracy on the 
more difficult problems.” 
  

… “it does not make sense to compute …. the group 
generalized inverse unless the individual elements of those 
matrices are of interest.”  



  

 Computational considerations - 2 
 

  

          

  

     From [2]: "The computation of M  using A#  yields 3 
     sources of error:

     1. The algorithm for computing π T

     2. The computation of the inverse of I −P +Π

   

           (The matrix may have negative elements - can cause 
             round-off  errors in computing the inverse.)
      3.   The matrix evaluation of M
            (The matrix multiplying D  may have negative 
             elements). "



11. Perturbation procedures 
  

 

         
    

   

The  basic ideas are very simple:
Start with a transition matrix P0,with known or easily evaluated

stat prob vector π 0
T , mean first passage time matrix M0, and 

group inverse  A0
#  for I −P0, (or g-inverse G0).

Sequentially change  P0 → P1 → P2 → ......→ Pm = P

by replacing the i th  row of Pi−1 with the i th  row, pi
T , of  P  

(i  = 1, 2, ..., m) to obtain Pi  .

Thus, if P0  = eip(0)i
T  , and

i=1

m∑  P  = 
 
 i=1

m∑ eipi
T  

then Pi = Pi−1 + eibi
T with bi

T = pi
T −  p(0)i

T  for i  = 1, 2, ..., m,

Update π i−1
T , Mi−1 and A i−1

#  (or Gi−1) to π i
T , Mi  and A i

#  (or Gi ) 

stopping with πm
T = π T ,Mi = M  and A i

# = A#.



 Choice of P0 

 

         
    

We require P0  to be irreducible. The simplest structure is

P0 =

1 m 1 m ... 1 m ... 1 m
1 m 1 m ... 1 m ... 1 m
. . ... . . .
1 m 1 m ... 1 m ... 1 m
. . ... . . .
1 m 1 m ... 1 m ... 1 m

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 1
m
eeT = 1

m
E

This leads to

                   M0 = mee
T     = mE

and             A0
# = I − 1

m
eeT = I − 1

m
E

 



12. The algorithms 
We consider six algorithms: 
1.  Extend the procedure of Hunter (JAMSA, 1991) 

using a family of 1-condition generalized inverse 
updates to find successive stat prob vectors 
with extensions to the group inverses. 

2.  Consider successive direct row perturbation 
updates of the group inverse (and hence the 
mean first passage times).  

3.  Consider a blend of 1. and 2. through updating 
using matrix procedures for the stat probability 
vectors and the group inverses in tandem. 

         
    



Algorithms 4, 5 and 6 
    Procedure based on updating specific  g-

inverses of I –  P of the form                            
that have simple forms for the mean first 
passage time matrix. since   

 
 
 
 
 
 
Note that it is easy to find the group inverse from 
the mean first passage time matrix since in these 
cases 

         
    

   

4.  βT = eT

m
, with G = Ge ≡ I −P + eeT

m
⎡

⎣
⎢

⎤

⎦
⎥

−1

.

5.  βT = e1
T , with  G = Ge1 = [I −P +ee1

T ]−1

6.  βT = eT , with  G = Gee = [I −P +eeT ]−1

   Ge = ge.

   A
# = (I − eπ T )G.

    G =  [I −P +eβT ]−1 



12.1: Perturbation procedures for stat distribns 
  

 

         
    

   

With P0 = eeT m, 

Pi = Pi−1 + eibi
T with bi

T = pi
T −  eT m.

With t0 = e  and u0
T = eT m  then G0 = [I −P0 + t0u0

T ]−1 = I.

Since u0
Te ≠ 0, π 0

Tt0 ≠ 0, π 0
T =

u0
TG0

u0
TG0e

= eT m.

Let t i = ei  and ui
T = ui−1

T + bi
T = ui−1

T + pi
T −  eT m,

then Gi = [I −Pi + t iui ]
−1 = Gi−1[I + (ei−1 − ei )(π i−1

T π i−1
T ei )]

implying π i
T =

ui
TGi

ui
TGie

, i = 1, 2, ...,m.

(Simplification of the calculations can be effected,
It can be shown that Gi = Gi−1 + Fi−1 where all the

elements of Fi-1 in rows numbered i+1, ....., m, are zeros.)



 Algorithm 1 
  

 

         
    

   

(i)   Let G0 = I, u0
T = eT m.

(ii)  For  i = 1, 2, ...,m, let pi
T = ei

TP,

       ui
T = ui−1

T + pi
T −  eT m,

       Gi = Gi−1 +Gi−1(ei−1 − ei )(ui−1
T Gi−1 ui−1

T Gi−1ei ).

(iii)  At  i = m, let G = Gm and 

        π T = πm
T =

um
TGm

um
TGme

.

(iv)  Compute H = G(I − eπ T ).

(v)   Compute A# = (I − eπ T )H.

(vi)  Compute M =  [I −H +EHd ]D  where D = ((eπ T )d)−1.



12.2: Perturbations of the Group Inverse 
 
 
 

         
    

    

Let P = P + Ε where the perturbing matrix Ε has the property

Εe = 0. Let Π = eπ T where π Tis the stat prob vector of the MC 
associated with P. 

Let A#and A
#
 be  the group inverses of A = I −P  and A = I −P.

(i)              I − ΕA#  is non-singular, 
(ii)   the stat prob vector of the perturbed MC is 

                          π
T
= πT (I − ΕA# )−1

(iii)  the group inverse of A = I −P  is

       A
#
= A#(I − ΕA# )−1 −Π(I − ΕA# )−1A#(I − ΕA# )−1. 



Row perturbations of the Group Inverse 
 
 
 

         
    

    

Let Ε = eib
T ,i.e. a perturbation to the i-th row with bTe ≠ 0,

π T = π T I + 1
1− bT A#ei

eib
T A#

⎡

⎣
⎢

⎤

⎦
⎥  and 

A# = A# + 1
1− bT A#ei

A#eib
T A# − eyT ,

       where    yT =
π i

1− bT A#ei

⎛

⎝⎜
⎞

⎠⎟
bT A# +

bT (A# )2ei

1− bT A#ei

I
⎛

⎝⎜
⎞

⎠⎟
A#.

(Note that yTe = 0.) See (Kirkland and Neumann, 2013).

Carry out row by row perturbations, with bi
T  the change at

the i-th row, and A i
#  the group inverse after the i-th change.

Ai
# = Ri + ey i

T  ⇒ Ri = Ri−1 +
1

1− bi
TRi−1ei

Ri−1eibi
TRi−1 with y i

Te = 0.



Algorithm 2 

 

         
    

     

(i)   Let P0 = eeT m ⇒ A0
# = I − eeT m. Take R0 = I − eeT m.

(ii)  For  i = 1, 2, ...,m, let pi
T = ei

TP,

       bi
T = pi

T −  eT m,

       Ri = Ri−1 +
1

1− bi
TRi−1ei

Ri−1eibi
TRi−1.

(iii)  At  i = m, let R = Rm  so that   A# = R + eym
T .

         (I −P)A# = I − eπ T   yields the stat prob vector:

       ⇒π T = e1
T − e1

T (I −P)R.

 (iv)    π T A = 0T yields the group inverse:

        ⇒ ym
T = −π TR ⇒ A# = (I − eπ T )R.

(v)  Compute M =  [I − A# +EAd
# ]D  where D = ((eπ T )d )−1.



12.3 Updating by matrix operations 

         
    

     

Let P = P + Ε where Ε has the property Εe = 0. 

Let Π = eπ T  and Π = eπ
T
where π Tand π

T
 

are the stat prob vectors associated with P  and P.

   π
T
= πT (I − ΕA# )−1 ⇒Π = Π(I − ΕA# )−1.

Under the perturbation Ε = eib
T to the i-th row with bTe ≠ 0,

(I − ΕA# )−1 = I + 1
1− bT A#ei

eib
T A#  so that

Π = Π I + 1
1− bT A#ei

eib
T A#

⎡

⎣
⎢

⎤

⎦
⎥   and 

A
#
= (I −Π)A#(I − ΕA# )−1 = (I −Π)A# I + 1

1− bT A#ei

eib
T A#

⎛

⎝⎜
⎞

⎠⎟
.



Algorithm 3 

 

         
    

(i)   Let P0 = eeT m⇒Π0 = eeT m, A0
# = I −eeT m. 

(ii)  For  i = 1, 2, ...,m, let pi
T = ei

TP, bi
T = pi

T −  eT m,

        Si = I +
1

1− bi
T Ai−1

# ei
eibi

T Ai−1
# ,

        Πi = Πi−1Si , 

        A i
# = (I −  Πi )A

#
i−1Si .

(iii)  At  i = m, let S = Sm then

         Π = Πm−1S,

         A# = (I −  Π )A#
m−1S.      

(iv)  Compute M =  [I − A# +EA#
d ]D, where D = (Πd )

−1.



12.4 Updating by g-inverses of I – P 

         
    

    

From the Sherman-Morrison formula, with P0  =
eeT

m
 

 K0 = [I −P0 + eβT ]−1 = [I + ehT ]−1 =I − ehT

1+ hTe
.

If Pi = Pi−1 + eibi
T , Ki = [I −Pi + eβT ]−1 = Ki−1 +

1
1− b i

Tei

Ki−1eib i
TKi−1.

4.  βT = eT

m
,Ge = Km, K0 = I ⇒π T = 1

m
eTKm.

5.  βT = e1
T ,Ge1 = Km, K0 = I + e eT

m
− e1

T⎛
⎝⎜

⎞
⎠⎟
⇒ π T = e1

TKm.

6. βT = eT ,Gee = Km, K0 = I − m −1
m

⎛
⎝⎜

⎞
⎠⎟

eeT ⇒π T = eTKm.



 Algorithm 4 
  

 

         
    

   

(i)   Let K0 = I. 

(ii)  For  i = 1, 2, ...,m, let pi
T = ei

TP,bi
T = pi

T − eT m.

       

       Ki = Ki−1(I +Ci ) where k i = 1− eiKi−1ei  and Ci =
1
ki

eibi
TKi−1

(iii)  At  i = m, let K = Km  then  π T = 1
m

eTK.

(v)   Compute A# = (I − eπ T )K.

(vi)  Compute M =  [I −K +EKd ]D  where D = ((eπ T )d )−1.



 Algorithm 5 
  

 

         
    

   

(i)   Let K0 = I + e eT

m
− e1

T⎛
⎝⎜

⎞
⎠⎟

  

(ii)  For  i = 1, 2, ...,m, let pi
T = ei

TP,bi
T = pi

T − eT m.

       

       Ki = Ki−1(I +Ci ) where k i = 1− eiKi−1ei  and Ci =
1
ki

eibi
TKi−1

(iii)  At  i = m, let K = Km  then  π T = e1
TK.

(v)   Compute A# = (I − eπ T )K.

(vi)  Compute M =  [I −K +EKd ]D  where D = ((eπ T )d )−1.



 Algorithm 6 
  

 

         
    

   

(i)   Let K0 = I − m −1
m

⎛
⎝⎜

⎞
⎠⎟

eeT . 

(ii)  For  i = 1, 2, ...,m, let pi
T = ei

TP,bi
T = pi

T − eT m.

       

       Ki = Ki−1(I +Ci ) where k i = 1− eiKi−1ei  and Ci =
1
ki

eibi
TKi−1

(iii)  At  i = m, let K = Km  then  π T = eTK.

(v)   Compute A# = (I − eπ T )K.

(vi)  Compute M =  [I −K +EKd ]D  where D = ((eπ T )d )−1.



 Test Problems 
    Introdced by Harrod &Plemmons (1984) and 

consided by others in different contexts. 
 

 TP1: The original transition matrix was not                     
irreducible and replaced ( Heyman (1987), 
Heyman & Reeves (1989)) by 

 
  

         
    

 

.1 .6 0 .3 0 0
.5 .5 0 0 0 0
.5 .2 0 0 .3 0
0 .7 0 .2 0 .1
.1 0 .8 0 0 .1
.4 0 .4 0 0 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥



 Test Problems 
 
TP2 (Also Benzi (2004)) 

  

         
    

.85 0 .149 .0009 0 .00005 0 .00005
.1 .65 .249 0 .00009 .00005 0 .00005
.1 .8 .09996 .0003 0 0 .0001 0
0 .0004 0 .7 .2995 0 .0001 0

.0005 0 .0004 .399 .6 .0001 0 0
0 .00005 0 0 .00005 .6 .2499 .15

.00003 0 .00003 .00004 0 .1 .8 .0999
0 .00005 0 0 .00005 .1999 .25 .55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.



 Test Problems 
 
TP3 

         
      

0.999999 1.0 E − 07 2.0 E − 07 3.0 E − 07 4.0 E − 07
0.4 0.3 0 0 0.3

5.0 E − 07 0 0.999999 0 5.0 E − 07
5.0 E − 07 0 0 0.999999 5.0 E − 07
2.0 E − 07 3.0 E − 07 1.0 E − 07 4.0 E − 07 0.999999

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.



Test Problem 

         
    

 

.1− ε .3 .1 .2 .3 ε 0 0 0 0
.2 .1 .1 .2 .4 0 0 0 0 0
.1 .2 .2 .4 .1 0 0 0 0 0
.4 .2 .1 .2 .1 0 0 0 0 0
.6 .3 0 0 .1 0 0 0 0 0
ε 0 0 0 0 .1− ε .2 .2 .4 .1
0 0 0 0 0 .2 .2 .1 .3 .2
0 0 0 0 0 .1 .5 0 .2 .2
0 0 0 0 0 .5 .2 .1 0 .2
0 0 0 0 0 .1 .2 .2 .3 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

TP41≡ ε  =1.0E-01,TP42 ≡ ε  =1.0E-03,
TP43 ≡ ε  =1.0E-05,TP44 ≡ ε  =1.0E-07.



    13. Computational Comparisons- Stat Distrns 
Used the GTH algorithm to get accurate results for 
the stationary probabilities.  
 Used expressions for the exact results (when 
available) 
 Comparisons using MatLab with the 6 algorithms 
in single and double precision. 

     Expressions for 
 
Various comparisons between procedures A & B: 
  
 

         
      {π i (E)},{π i (S)},{π i (D)},{π i (GTHS)},{π i (GTHD)},

RE(A,B) = π i (A)−π i (B)
i=1

m∑
MAXE(A,  B) = max

1≤i≤m
π i (A)−π i (B)   (or MINE(A,B))

MAXRE(A) = max
1≤ j≤m

π j (A)− π i (A)
i=1

m∑ pij



    13. Computational Comparisons- MFPT 
    No expressions for the exact results are available. 

 Comparisons using MatLab with the 6 algorithms 
in single and double precision:  

  Expressions for 
   Various comparisons 
  
 

         
    

  M(S) = [mij (S)],  M(D) = [mij (D)]

  

RE  M(S, D) = mij (S)−mij (D)
j=1

m∑i=1

m∑ ,

MAXE  M(S, D) = max
1≤i≤m,1≤ j≤m

mij (S)−mij (D) ,

MINE  M(S, D) = min
1≤i≤m,1≤ j≤m

mij (S)−mij (D)

MAXRES M(D) = max
1≤i≤m,1≤ j≤m

mij (D)− pikmkj (D)
k≠ j∑ −1.



 13. Computational Comparisons- Group Inverse 
   No exact results available. 
   Comparisons difficult due to a number of conditions 

to be satisfied.  
    Comparisons using MatLab with the 6 algorithms 

in single and double precision for errors incurred in 
calculating the parameters.  

  

         
    

   

α , β  and γ , which should be close to
 e, π  and -1, respectively.

Compute    MAXDELTA α =    max
1≤i≤m

α i −1,

                    MAXDELTA β = max
1≤i≤m

β i − π i ,

                    DELTA γ  = βA#α



   Comparisons  
 
    For this talk we present comparisons for the 7 test 

problems, the 6 algorithms under double precision 
for the 

    MAX RESIDUAL ERRORS for the stat probs, 
    
     
    MAX RESIDUAL ERRORS for the MFPTs 
 

  
    MAX DELTAS for the group inverse parameters 
 

  
 
    
   

         
    

 MAXRE SD = max
1≤ j≤m

π j − π ii=1

m∑ pij ,

MAXRES M = max
1≤i≤m,1≤ j≤m

mij − pikmkjk≠ j∑ −1



 

AL3 performs the worst
AL5 consistently performs the best
All other algorithms perform satisfactorily



 

All algorithms have a similar performance 
Except AL4 and AL2 poor for TP3 and AL2 poor for TP2
AL4 best performer for other TPs



 

All algorithms have a similar performance 
Except AL4 and AL2 poor for TP3 and AL2 poor for TP2
AL4 best performer for other TPs



 

All algorithms have a similar performance 
Except AL2 poor for TP3 
AL1 very accurate for TP3



 

All algorithms have a similar performance 
Except AL2 poor for TP3 
AL5 very accurate for TP42


