Riesz distributions on symmetric matrices and the Olkin-Rubin Characterization

Abdelhamid Hassairi

Laboratory of Probability and Statistics

Sfax University

Ljubljana, June 2014

Introduction Riesz distribution Riesz inverse Gaussian distributions Riesz-Dirichlet distribution Beta-Riesz distribution Olkin-Rubin theorem *V* the space of real symmetric $r \times r$ matrices Ω the cone of positive definite elements of *V e* the identity matrix $\Delta(x)$ =determinant of *x* **Notion of "quotient" on symmetric matrices** $y \in \Omega$, $y = y^{\frac{1}{2}}y^{\frac{1}{2}}$ and define the ratio *x* by *y* as $= x(-1)^{\frac{1}{2}}(x) - 1^{\frac{1}{2}} - 1^{\frac{1}{2}}$

$$P(y^{-\overline{2}})(x) = y^{-\overline{2}}xy^{-\overline{2}}.$$

Cholesky decomposition y = tt', where t is a lower triangular matrix t' is its transpose. We set

$$y(x) = txt'$$

The "quotient" of x by y is then defined as

$$y^{-1}(x) = t^{-1}xt'^{-1}$$

Generalized power and spherical Fourier transform Let $x = (x_{ij})_{1 \le i,j \le r}$ be in Ω . For $1 \le k \le r$, we denote $\Delta_k(x) = \det((x_{ij})_{1 \le i, j \le k})$ The generalized power of X is then defined for $s = (s_1,...,s_r)$, by

$$\Delta_s(x) = \Delta_1(x)^{s_1 - s_2} \Delta_2(x)^{s_2 - s_3} \cdots \Delta_r(x)^{s_r}$$

In particular, when $s = e_i = (0, ..., 0)$, and with $\Delta_0(x) = 1$,

$$\Delta_{e_i}(x) = \frac{\Delta_i(x)}{\Delta_{i-1}(x)}.$$

For x and y in Ω_r , we have

$$\Delta_s(y(x)) = \Delta_s(y)\Delta_s(x)$$

and

$$\Delta_s(y^{-1}(x)) = \Delta_s(x)\Delta_{-s}(y).$$

Spherical Fourier transform for a K-invariant distribution on Ω :

$$s \mapsto \mathbb{E}(\Delta_s(X))$$

It characterizes the distribution.....

It plays the role of the Mellin transform for the class of K-invariant distributions on Ω .

For X in Ω , we associate the vector

$$M(X) = (\Delta_{e_1}(X), \dots, \Delta_{e_r}(X)).$$

We have

$$\Delta_s(X) = (M(X))^s = \Delta_{e_1}(X)^{s_1} \dots \Delta_{e_r}(X)^{s_r}.$$
$$\mathbb{E}(\Delta_s(X)) = \mathbb{E}((M(X))^s)$$
In the real case $(r = 1), M(X) = X.$

For any matrix $x \in V$ and a given $k \in \{1, \dots, r-1\}$, define the partitioning into blocks

$$x = \left(\begin{array}{cc} x_{11} & x_{12} \\ x_{21} & x_{22} \end{array}\right)$$

with x_{11} a $k \times k$ block, $x_{12} = x_{21}^*$ a $k \times (r - k)$ block and x_{22} a $(r - k) \times (r - k)$ block.

$$x_{1.2} = x_{11} - x_{12}x_{22}^{-1}x_{21}$$
 and $x_{2.1} = x_{22} - x_{21}x_{11}^{-1}x_{12}$.

(Massam and Neher 1997) For $x \in \Omega$, we have

$$\det(x) = \det(x_{11}) \det(x_{2.1})$$

For $x \in \Omega$, we have

$$\Delta_s(x) = \Delta_{w_1}(x_{11}) \Delta_{w_2}(x_{2.1}),$$

where $w_1 = (s_1, \dots, s_k)$ and $w_2 = (s_{k+1}, \dots, s_r)$.

Riesz distribution

Consider the Gindikin set $\Lambda = \{\frac{1}{2}, 1, \dots, \frac{(r-1)}{2}\} \cup (\frac{(r-1)}{2}, +\infty)$. For $p \in \Lambda$ it is well known (Gindikin, 1964) that there exists a positive measure μ_p on Ω such that the Laplace transform of μ_p exists for $-\theta \in \Omega$ and is equal to

$$L_{\mu_p}(\theta) = \int_{\overline{\Omega_r}} e^{\langle \theta, x \rangle} \mu_p(dx) = (\det(-\theta))^{-p}$$

We introduce the set Ξ of elements $s = (s_1, \dots, s_r)$ of \mathbb{R}^r defined as follows: For a real number $u \ge 0$, we put

$$\varepsilon(u) = 0$$
 if $u = 0$,
 $\varepsilon(u) = 1$ if $u > 0$.

For $u_1, u_2, \cdots, u_r \geq 0$, we define

$$s_1 = u_1,$$

$$s_k = u_k + \frac{d}{2}(\varepsilon(u_1) + \dots + \varepsilon(u_{k-1})), \quad 2 \le k \le r.$$

7

Theorem 1. There exists a positive measure R_s on V such that the Laplace transform is defined on $-\Omega_r$ and is equal to

$$L_{R_s}(\theta) = \Delta_s(-\theta^{-1})$$

if and only if s is in Ξ .

Proposition 2. Let $s \in \Xi$. The Riesz measure R_s is in $\mathcal{M}(V)$ if and only if $s_1 \neq 0$.

Let $s \in \Xi$ such that $s_1 \neq 0$. $F(R_s)$ is called a Riesz N.E.F.

The Wishart on Ω , shape parameter $p > \frac{r-1}{2}$, scale parameter σ ,

$$W_r(p,\sigma)(dx) = \frac{(\det \sigma)^p}{\Gamma_{\Omega_r}(p)} e^{-\langle \sigma, x \rangle} (\det x)^{p - \frac{r+1}{2}} \mathbf{1}_{\Omega_r}(x) dx,$$

where $\Gamma_{\Omega}(.)$ is the multivariate gamma function

$$\Gamma_{\Omega}(p) = (2\pi)^{\frac{r(r-1)}{2}} \prod_{k=1}^{r} \Gamma(p - \frac{k-1}{2}).$$

The absolutely continuous matrix Riesz distribution

$$R(s,\sigma)(dx) = \frac{1}{\Gamma_{\Omega}(s)\Delta_s(\sigma^{-1})} e^{-\langle \sigma, x \rangle} \Delta_{s-\frac{n}{r}}(x) \mathbf{1}_{\Omega}(x) dx,$$

where σ is in Ω , $s = (s_1, \dots, s_r)$ is in \mathbb{R}^r such that $s_i > (i-1)\frac{1}{2}$

$$\Gamma_{\Omega}(s) = (2\pi)^{\frac{n-r}{2}} \prod_{j=1}^{r} \Gamma(s_j - (j-1)\frac{1}{2}).$$

The Variance function

 $P_i^*(x) = x_{22}$ of size *i*, for $1 \le i \le r$. **Theorem 3.** Let $F(R_s)$ be the Riesz NEF generated by the measure R_s . Then

$$-M_{F(R_s)} = \Omega.$$
$$-\forall m \in \Omega,$$

$$V_{F(R_s)}(m) = \sum_{i=1}^{r} (s_{r-i+1} - s_{r-i}) P[\frac{1}{s_{r-i+1}}(P_i^*(m^{-1}))^{-1} + \sum_{k=1}^{i-1} (\frac{1}{s_{r-k+1}} - \frac{1}{s_{r-k}})(P_k^*(m^{-1}))^{-1}].$$

9

Some properties.

Theorem 4. Let X be a Riesz random variable on Ω_r with parameters (s,σ) . Partition X and σ in blocks according to the dimension k and r - k as

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \qquad \qquad \sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}.$$

Then

$$-X_{11} \sim R_k(w_1, \sigma_{1,2}), \text{ where } w_1 = (s_1, \cdots, s_k).$$

$$-X_{2,1} \sim R_{r-k}(w_2 - \frac{k}{2}, \sigma_{22}), \text{ and is independent of } X_{12} \text{ and } X_{11},$$

where $w_2 = (s_{k+1}, \cdots, s_r).$

$$-X_{12}|X_{11} \sim N_{k \times (r-k)} \left(-\{\sigma_{22}^{-1}\sigma_{12}x_{11}\}, (4L(\sigma_{22})L(x_{11}^{-1}))^{-1}\right).$$

Riesz inverse Gaussian distributions

The Riesz inverse Gaussian distribution on $\boldsymbol{\Omega}$ is defined by

$$\frac{1}{\mathcal{K}(s,a,b)} \exp\{-(\langle a,x \rangle + \langle b,x^{-1} \rangle)\} \Delta_{s-\frac{r+1}{2}}(x) \mathbf{1}_{\Omega_r}(x) dx,$$

where $\mathcal{K}(s,a,b)$ is the generalized Bessel function and (s,a,b) satisfy

$$\begin{cases} b \in \overline{\Omega_r}, \ a \in \Omega_r & \text{ if } \\ b \in \Omega_r, \ a \in \Omega_r & \text{ if } \\ b \in \Omega_r, \ a \in \overline{\Omega_r} & \text{ if } \\ c \in \overline{\Omega_r} & \text$$

Theorem 5. Let X be a random variable in Ω with distribution $R_r(s,\sigma)$. Then the conditional distribution of X_{11} given X_{12} has a Riesz inverse Gaussian distribution with parameters $w_1 - \frac{r-k}{2}, 2\sigma_{11}$ and $2P(x_{12})\sigma_{22}$, where $w_1 = (s_1, \dots, s_k)$.

P(a)(x) = axa

Riesz Dirichlet distribution

Theorem 6. Let Y_1, \dots, Y_q be q independent Riesz random variables with the same σ , $Y_j \sim R(s^j, \sigma)$, where $s^j = (s_1^j, \dots, s_r^j) \forall 1 \leq j \leq q$. If we set $S = Y_1 + \dots + Y_q$ and $X_j = S^{-1}(Y_j)$, then i) S is a Riesz random variable $S \sim R(\sum_{j=1}^q s^j, \sigma)$ and is independent of (X_1, \dots, X_{q-1}) . ii) The density of the joint distribution of (X_1, \dots, X_{q-1})

$$\frac{\Gamma_{\Omega}(\sum_{j=1}^{q} s^{j})}{\prod_{j=1}^{q} \Gamma_{\Omega}(s^{j})} \prod_{j=1}^{q-1} \Delta_{s^{j}-\frac{n}{r}}(x_{j}) \Delta_{s^{q}-\frac{n}{r}}(e-(x_{1}+\cdots+x_{q-1}))$$

where $x_j \in \Omega$, $1 \le j \le q-1$ and $e - \sum_{j=1}^{q-1} x_j \in \Omega$.

12

Definition 7. The distribution of (X_1, \dots, X_q) is called the Riesz-Dirichlet distribution on V with parameters (s^1, \dots, s^q) denoted by $D_{(s^1, \dots, s^q)}$.

If $s_k^j = p_j$; $1 \le k \le r$, then $D_{(s^1, \dots, s^q)}$ is Wishart-Dirichlet $D_{(p_1, \dots, p_q)}$.

Theorem 8. Let $X = (X_1, \dots, X_q)$ be a Riesz-Dirichlet random variable with distribution $D_{(s^1,\dots,s^q)}$. Then for all $1 \le k \le r$, the random variable $(P_k(X_1),\dots,P_k(X_q))$ has a Dirichlet distribution $D_{(\underline{s}^1,\dots,\underline{s}^q)}$, where $\underline{s}^i = (s_1^i,\dots,s_k^i)$, $\forall 1 \le i \le q$.

Theorem 9. Let $X = (X_1, \dots, X_q)$ be a Riesz-Dirichlet random variable with distribution $D_{(s^1,\dots,s^q)}$, and let $1 \le j \le r-1$. Setting $S_j = \sum_{l=1}^q (P_j^*(X_l^{-1}))^{-1}$, we have that $(S_j^{-1}((P_j^*(X_1^{-1}))^{-1}),\dots,S_j^{-1}((P_j^*(X_q^{-1}))^{-1})))$ has a Riesz-Dirichlet distribution $D_{(\overline{s}^1-(r-j)\frac{d}{2},\dots,\overline{s}^q-(r-j)\frac{d}{2})}$, where

 $\overline{s}^i = (s^i_{r-j+1}, \cdots, s^i_r), \forall 1 \le i \le q.$

Characterization 2

Let X_1, \ldots, X_q be real random variables. Then (X_1, \ldots, X_q) has a Dirichlet joint distribution with parameters (p_1, \ldots, p_q) if and only if, for all positive real numbers f_1, \ldots, f_q ,

$$\mathbb{E}[(\sum_{i=1}^{q} f_i X_i)^{-(p_1 + \dots + p_q)}] = \prod_{i=1}^{q} f_i^{-p_i}.$$
 (1)

(appears in Chamayou, Letac (1994))

$$P(a)(x) = axa$$

For
$$a \in \Omega$$
, we define $\mathbb{H}(a)(x) = x + P(a^{\frac{1}{2}})(x)$, $x \in V$

Theorem 10. Let p_1, \ldots, p_q be in $(\frac{r-1}{2}, +\infty)$, $p = p_1 + \ldots + p_q$ and let $X = (X_1, \ldots, X_q)$ be a random variable on $\overline{T_q}$ with Kinvariant distribution. Then X has the Dirichlet distribution with parameters (p_1, \ldots, p_q) if and only if for all a_1, \ldots, a_q in Ω , we have

$$\mathbb{E}[(\Delta(\sum_{i=1}^{q} \mathbb{H}(a_i)(X_i)))^{-p}] = \prod_{i=1}^{q} (\Delta(\mathbb{H}(a_i)(e)))^{-p_i}.$$
 (2)

We set
$$a_i = (f_i - 1)e$$
, we get
$$\mathbb{E}[(\Delta(\sum_{i=1}^q f_i X_i))^{-p}] = \prod_{i=1}^q f_i^{-rp_i}.$$

Beta Riesz distribution

Theorem 11. Let X and Y be two independent Riesz random variables $X \sim R(s,\sigma)$ and $Y \sim R(s',\sigma)$; $s, s' \in \mathbb{R}^r$ such that $s_i > \frac{i-1}{2}$, $s'_i > \frac{i-1}{2}$ for all $1 \le i \le r$. If we set V = X + Y and $U = (X + Y)^{-1}(X)$, then

i) V is a Riesz random variable $V \sim R(s+s',\sigma)$ and is independent of U

ii) The density of U with respect to the Lebesgue measure is

$$\frac{1}{B_{\Omega_r}(s,s')}\Delta_{s-\frac{r+1}{2}}(x)\Delta_{s'-\frac{r+1}{2}}(e_r-x)\mathbf{1}_{\Omega_r\cap(e_r-\Omega_r)}(x),$$

where $B_{\Omega_r}(s,s')$ is the beta function defined on the symmetric cone Ω_r by

$$B_{\Omega_r}(s,s') = \frac{\Gamma_{\Omega_r}(s)\Gamma_{\Omega_r}(s')}{\Gamma_{\Omega_r}(s+s')}.$$

16

If X has the distribution β_{p_1,p_2} , which is K-invariant, we have

$$\mathbb{E}(\Delta_s(X)) = \frac{\Gamma_{\Omega}(p_1+s)}{\Gamma_{\Omega}(p_1)} \frac{\Gamma_{\Omega}(p_1+p_2)}{\Gamma_{\Omega}(p_1+p_2+s)},$$
(3)

for all $s = (s_1, ..., s_r)$ such that $s_i > -(p_1 - \frac{i-1}{2})$.

Theorem 12. Let X be a random matrix in $\Omega \cap (e - \Omega)$. Then X is $\beta_{p,q}$ distributed, where $p, q > \frac{r-1}{2}$, if and only if

i) The distribution of X is in \mathcal{A} ,

ii) For $i \in \{1,...,r\}$, the real random variable $\Delta_{e_i}(X)$ has the distribution $\beta_{p-\frac{i-1}{2},q}$,

iii) The $\Delta_{e_i}(X)$ are independent.

(⇒) appears in Muirhead, as an exercise on the beta matrix $\beta_{\frac{n}{2},\frac{m}{2}}$ (⇐) spherical Fourier transform

Olkin and Rubin Theorem

Theorem 13. If U and V are $r \times r$ random symmetric positive definite matrices which are independently distributed, then U and V have a Wishart distribution with the same scale matrix if and only if

* Z = U + V is independent of $X = (U + V)^{-1}(U)$.

* the distribution of X is K-invariant.

Theorem 14. Let U and V be two independent random variables valued in Ω_r with strictly positive twice differentiable densities. Set Z = U + V and $X = P((U + V)^{-\frac{1}{2}})(U)$. If X and Z are independent then their exist $p,q \in \mathbb{R}$; $p,q > \frac{(r-1)}{2}$, and $\sigma \in \Omega_r$ such that $U \sim W_r(p,\sigma)$ and $V \sim W_r(q,\sigma)$. **Theorem 15.** We use the division algorithm defined by the Cholesky decomposition. Let X and Y be independent random variables valued in Ω_r with strictly positive twice differentiable densities. Set V = X + Y and $U = V^{-1}(X)$. If U and V are independent then there exist $s, s' \in \mathbb{R}^r$; $s_i > \frac{i-1}{2}, s'_i > \frac{i-1}{2}$ for all $1 \le i \le r$, and $\sigma \in \Omega_r$ such that $X \sim R(s,\sigma)$ and $Y \sim R(s',\sigma)$. The proof of this theorem relies on the resolution of two functional equations given in the following theorems which are interesting in their own rights.

Theorem 16. Let $a : \Omega \cap (e - \Omega) \longrightarrow \mathbb{R}$ and $f : \Omega \longrightarrow \mathbb{R}$ be functions such that, for any $x \in \Omega \cap (e - \Omega)$ and $y \in \Omega$,

$$a(x) = f(y(x)) - f(y(e_r - x))).$$

Assume that f is differentiable, then there exist $p \in \mathbb{R}^r$ and $c \in \mathbb{R}$ such that, for any $x \in \Omega \cap (e - \Omega)$ and $y \in \Omega$,

$$a(x) = \log \Delta_p(x) - \log \Delta_p(e_r - x), \ f(y) = \log \Delta_p(y) + c.$$

Theorem 17. Let $a_1 : \Omega \cap (e - \Omega) \longrightarrow \mathbb{R}$ and $a_2, f : \Omega \longrightarrow \mathbb{R}$ be functions satisfying

$$a_1(x) + a_2(y) = f(y(x)) + f(y(e_r - x)),$$

for any $x \in \Omega \cap (e - \Omega)$ and $y \in \Omega$. Assume that f is twice differentiable then there exist $p' \in \mathbb{R}^r$, $\delta \in V$ and $c_1, c_2, c_3 \in \mathbb{R}$ such that for any $x \in \Omega \cap (e - \Omega)$ and $y \in \Omega$,

$$f(y) = \log \Delta_{p'}(y) + \langle \delta, y \rangle + c_1$$
$$a_1(x) = \log \Delta_{p'}(x) + \log \Delta_{p'}(e_r - x) + c_2,$$
$$a_2(y) = 2 \log \Delta_{p'}(y) + \langle \delta, y \rangle + c_3,$$
where $2c_1 = c_2 + c_3.$

References

1. Bobecka, K., Wesolowski, J. (2002). The Lukacs-Olkin-Rubin theorem without invariance of the "quotient". *Studia Math.* 152, 147-160.

2. Gindikin, S. G., Analysis on homogenous domains. Russian Math. Surveys., **39**(1964), 1-89.

3. Hassairi, A., Lajmi, S and Zine, R. (2008) A characterization of the Riesz distribution. *Journal of Theoretical Probability*, **21**, 773-790.

4. Hassairi, A., Lajmi, S. (2001). Riesz exponential families on symmetric cones. *J. Theoret. Probab.* 14, 927-948.

5. Hassairi, A., Lajmi, S., and Zine, R. (2005). Beta-Riesz distributions on symmetric cones. *J. Stat. Plann. Inf.* 133, 387-404.
 6. Lukacs, E. (1955). A characterization of the gamma distribu-

tion. Ann. Math. Statist. 26, 319-324.

7. Olkin, I., Rubin, H. (1962). A characterization of the Wishart distribution. *Ann. Math. Statist.* 33, 1272-1280.