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V the space of real symmetric r x r matrices

€2 the cone of positive definite elements of V

e the identity matrix

A(x)=determinant of x

Notion of "1q1{otient" on symmetric matrices
y € 2, y = y2y2 and define the ratio = by y as

_1 ~1 1
Py 2)(z) =y 2xy 2.
Cholesky decomposition y = tt/, where t is a lower triangular

matrix ¢’ is its transpose. We set

y(x) = txt’
The "quotient” of x by y is then defined as

y_l(a:) = ¢ 11



Generalized power and spherical Fourier transform

Let x = (xij)lgi,jgr be in €2.

For 1 <k <r, we denote Ay(x) = det((w;j)1<i, j<k)

The generalized power of X is then defined for s = (sq,...,s1), by

As(r) = A1(x)° 172 00(2)727 3 - - - Ap(z)™

In particular, when s =¢;, = (0,...,1,...,0), and with Ag(z) =1,

Ai(x)
Ai_1(z)

Aez(m) —
For x and y in €2, we have

As(y(x)) = As(y)As(x)
and

As(yH @) = Ds(x) A s(y).



Spherical Fourier transform for a K-invariant distribution on £2:

s — E(As(X))

It characterizes the distribution.....

It plays the role of the Mellin transform for the class of K-
invariant distributions on (2.

For X in €2, we associate the vector

M(X) = (Dey (X)), D (X)),
We have

As(X) = (M(X))* = De; (X)1... A, (X))

E(As(X)) = E((M(X))®)
In the real case (r=1), M(X) = X.



For any matrix x € V and a given k € {1,--- »r — 1}, define the
partitioning into blocks
o= [ T11 %12
21 X22

with 211 a k x k block, 10 = 2%, a k X (r — k) block and zop a
(r — k) x (r— k) block.

r12 =111 — 3312335213321 and xo 1 = x990 — 562133I115012~
(Massam and Neher 1997) For z € 2, we have
det(a:) = det(ajll) det(mg.l)
For € €2, we have

As(xr) = Aw(z11)Awy(T2.1),

where wy = (s1,--- ,5;) and wo = (Sg41," - ,57).



Riesz distribution

Consider the Gindikin set A = {%,1, p ,@} U (0“5—1), + 00).
For p € A it is well known (Gindikin, 1964) that there exists a
positive measure pp on €2 such that the Laplace transform of pp
exists for —0 € €2 and is equal to

Lip(0) = | el p(dw) = (det(=0)) 7.

T

We introduce the set = of elements s = (s1,--- ,sr) Of R" defined
as follows: For a real number v > 0, we put

e(u) = 0 if w=0,
e(u) = 1 if wu>0.
For wyi,uo,--- ,ur > 0, we define

81 - U1,

d
S, = Uk+§(€(U1)-|-"'+€(uk—1)), 2<k<r.



Theorem 1. There exists a positive measure Rs on V such that
the Laplace transform is defined on —S2, and is equal to

LRS(H) — As(_e_l)
if and only if s is in =.

Proposition 2. Let s € =. The Riesz measure Rs is in M(V) if
and only if s1 # 0.

Let s € = such that s; # 0. F'(Rs) is called a Riesz N.E.F.



T he Wishart on €2, shape parameter p > % scale parameter o,

(det a)p

o, (p )
where ' (.) is the multivariate gamma function

Wr(p,o)(dz) =

+1
(0,3 (deta:)p 5 1o (x)dx,

(r—1) [T E—1
2 M(p — —)

Folp) = |

k=1
The absolutely continuous matrix Riesz distribution
1

Fa(s)As(o™1)

where ¢ is in €, s = (s1,---,s7) is in R” such that s; > (i — 1)

R(s,0)(dz) = e_<0’x>As_%(a:)1Q(a§)dx,

ro(s) = (20)'% Hr<sj G- 1)



T he Variance function

P*(x) = x9p Of size 4, for 1 <i <.
Theorem 3. Let F'(Rs) be the Riesz NEF generated by the mea-
sure Rs. Then

— VYm € €2,
" 1
Vir) (M) = Y (sr—it1 — sp—i) P| (PF(m~1t)~1
1=1 S’f‘—’l:—l—].
‘= 1 1 * —1\y—1
+ > ( — )(Pe(m™ 7)) 7]

k=1 Sr—k+1 Sr—k



Some properties.

Theorem 4. Let X be a Riesz random variable on 2, with pa-

rameters (s,0). Partition X and o in blocks according to the
dimension k and r — k as

X11 X2 011 012
X = o= .
<X21 X292 021 022

T hen

— X11 ~ Rp(wy,01.2), where wy = (s1,-- ,s%).

— Xo1~R,_p(wo— %,022), and is independent of X1, and X1,
where wp = (Sg4-1," " ,5r).

— X12|X11 ~ Niyr—) (—{o23 012211 },(4L(022) L(z711)) 1),
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Riesz inverse Gaussian distributions
The Riesz inverse Gaussian distribution on €2 is defined by
1 —1
ooy P (@a) + 0T IA g1 (9)1g, (@)da

where K(s,a,b) is the generalized Bessel function and (s,a,b) sa-
tisfy

(beQrac  if s> UD wvi<i<o,
s be 2, a € 2, i _ggsig(lal)’vlgigr’
be acy  if <50 vi<i<r

Theorem 5. Let X be a random variable in €2 with distribution
Rr(s,0). Then the conditional distribution of X171 given X1, has a
Riesz inverse Gaussian distribution with parameters wl—%,Qall
and 2P(:L‘12)O‘22, where w1 = (81, s 73k)-

P(a)(x) = axa
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Riesz Dirichlet distribution

Theorem 6. Let Yy, ---,Y; be q independent Riesz random va-
riables with the same o, Y; ~ R(s),0), where s) = (s1,--+,87) V1 <

j<q Ifweset S=Yi+ ---+Y;and X; =5 (Y) then
q
i) S is a Riesz random variable S ~ R( Z s).0) and is independent
Jj=1
of (X17 T 7Xq—1>'
i) The density of the joint distribution of (Xy,---,X,_1)

q .
rQ(Z s/) —1
7 =1 - H Asj_%(xj)Asq—%(e — (3;1 —|— .. _|_ xq—l)
[] ra(s?) /=1
1=1

q—1
where z; € 2, 1<j<g—1lande— ) z;€c Q.
j=1
12



Definition 7. The distribution of (Xq,---,Xq) is called the Riesz-
Dirichlet distribution on V with parameters (sl,. .- s%) denoted

by D(Sla"'asq) |

If ) = pj ; 1 <k < r, then Dy(41.... sy IS Wishart-Dirichlet
D(pla"'ap(J)'



Theorem 8. Let X = (X1, --,Xq) be a Riesz-Dirichlet random
variable with distribution D(Sl e 50) Then for all 1 < k < r, the
random variable (P.(X1), - --,P.(Xq)) has a Dirichlet distribution
D(§1,.“,§q), where s* = (szl, e ,s}‘;), V1l <i<gq.

Theorem 9. Let X = (X1, --,Xq) be a Riesz-Dirichlet random

variable with distribution D(S1 e g1)7 andlet1 <j<r—1. Setting

q
S; = Z(P]?"(Xl_l))_l, we have that
=1

(S, PFX T, -8 N (PF (X))
has a Riesz-Dirichlet distribution D

gi — (S:,ia_j_|_]_7 o 783.’)7 V1 S v S q.

(g1 e
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Characterization 2
Let Xq,...,Xq be real random variables. Then (Xq,...,Xy) has
a Dirichlet joint distribution with parameters (p1,...,pq) if and

only if, for all positive real numbers f1,...,fq,
: G1+-+p)] = T P
E[() fiXy)~WPrr-TPd] = ] £ (1)

(appears in Chamayou, Letac (1994))
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P(a)(xz) = axa

For a € ©, we define H(a)(z) = z + P(a2)(z), z €V

Theorem 10. Let py,...,pq be in (%, + ), p = pl_—l— ..+ pg
and let X = (X4,...,Xq) be a random variable on T, with K-
invariant distribution. Then X has the Dirichlet distribution with
parameters (p1,...,pq) if and only if for all aq,...,aq in 2, we have

q q
E[(A() H(a))(X)) Pl = [] (AH(a;)(e))) P (2)
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We set a; = (f; — 1)e, we get

q q
E[(ACY. XN 1= 11 £



Beta Riesz distribution

Theorem 11. Let X and Y be two independent Riesz random

variables X ~ R(s,0c) and Y ~ R(s',0); s, s € R" such that
s; > 5, sh>'St foralll<i<r.

Ifweset V=X4Y and U = (X +Y) 1(X), then

i)V is a Riesz random variable V ~ R(s+s',0) and is independent
of U

ii) The density of U with respect to the Lebesgue measure is
1
Bg, (s,s")

where Bq, (s,s’) is the beta function defined on the symmetric
cone 2, by

AS—E(ZU)AS/—M(GT o x)lﬂrﬂ(er—gr) (x)a
2 2

Mo, ()M, (s)

Ba,(s,5) = Fo (s+s)
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If X has the distribution 8p, »,, Which is K-invariant, we have

Fo(pr +3s) Mol +p2)
E AS X — , 3
(B0 =500 Tan + 72+ 9) (3)
for all s = (s1,...,sr) such that s; > —(p1 — %).

Theorem 12. Let X be a random matrix in QN (e— ). Then
X is Bp,q distributed, where p, ¢ > * 2 , If and only if

i) The distribution of X is in A,

ii) For i € {1 .,r}, the real random variable A¢ (X) has the
distribution 5 ”
2 I

iii) The Aei(X) are independent.

(=) appears in Muirhead, as an exercise on the beta matrix 637%
(<) spherical Fourier transform
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OIlkin and Rubin Theorem

Theorem 13.If U and V are r x r random symmetric positive
definite matrices which are independently distributed, then U and
V' have a Wishart distribution with the same scale matrix if and
only if

* 7 =U 4+ V is independent of X = (U + V)~ 1(U).

* the distribution of X is K-invariant.
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Theorem 14. Let U andV be two independent random variables
valued in €2, with strictly positive twice 1differentiab/e densities.
Set Z =U+V and X = P((U+ V) 2)(U). If X and Z are
independent then their exist p,gq € R, p,gq > @ and o € 2
such that U ~ Wy(p,0c) and V ~ Wy(q,0).
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Theorem 15. We use the division algorithm defined by the Cho-
lesky decomposition. Let X and Y be independent random va-
riables valued in 2, with strictly positive twice differentiable den-
sities. Set V. = X +Y and U = V- 1(X). IfU and V are inde-
pendent then there exist s, s’ € IR"; s; > % st- > % for all
1<i:<r, and o € 2, such that X ~ R(s,0) and Y ~ R(s',0).

20



The proof of this theorem relies on the resolution of two func-
tional equations given in the following theorems which are inter-
esting in their own rights.

Theorem 16.Llet a : QN(e—N) — IR and f : Q — IR be
functions such that, for any x € Q2N (e —2) and y € 2,

a(z) = f(y(z)) — f(y(er —x))).

Assume that f is differentiable, then there exist p € IR" and
¢ € IR such that, for any x € QN (e— ) and y € 2,

a(z) =log Ap(x) —log Ap(er — ), f(y) =109 Ap(y) + c.
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Theorem 17. Let a1 : QN(e—N) — IR and a», f: Q2 — IR be
functions satisfying

a1(z) + a2(y) = f(y(z)) + f(y(er —x)),

for any x € QN (e— Q) and y € 2. Assume that f is twice
differentiable then there exist p’ €¢ R", § € V and c1, c2, c3 € IR
such that for any x € QN (e— Q) and y € 2,

f(y) =log A, (y) + (6,y) + c1
a1(z) =109 A (x) + 109 A (er — ) + c2,

az(y) = 2109 A, (y) + (4,y) + c3,

where 2c1 = co + c3.
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