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V the space of real symmetric r × r matrices
Ω the cone of positive definite elements of V

e the identity matrix
∆(x)=determinant of x

Notion of "quotient" on symmetric matrices
y ∈ Ω, y = y

1
2y

1
2 and define the ratio x by y as

P (y−
1
2)(x) = y−

1
2xy−

1
2.

Cholesky decomposition y = tt′, where t is a lower triangular
matrix t′ is its transpose. We set

y(x) = txt′

The "quotient" of x by y is then defined as

y−1(x) = t−1xt′−1

.
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Generalized power and spherical Fourier transform
Let x = (xij)1≤i,j≤r be in Ω.

For 1 ≤ k ≤ r, we denote ∆k(x) = det((xij)1≤i, j≤k)
The generalized power of X is then defined for s = (s1,...,sr), by

∆s(x) = ∆1(x)
s1−s2∆2(x)

s2−s3 · · ·∆r(x)
sr

In particular, when s = ei = (0,...,1,...,0), and with ∆0(x) = 1,

∆ei(x) =
∆i(x)

∆i−1(x)
.

For x and y in Ωr, we have

∆s(y(x)) = ∆s(y)∆s(x)

and

∆s(y
−1(x)) = ∆s(x)∆−s(y).
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Spherical Fourier transform for a K-invariant distribution on Ω:

s 7→ E(∆s(X))

It characterizes the distribution.....
It plays the role of the Mellin transform for the class of K-
invariant distributions on Ω.
For X in Ω, we associate the vector

M(X) = (∆e1(X),...,∆er(X)).

We have

∆s(X) = (M(X))s = ∆e1(X)s1...∆er(X)sr.

E(∆s(X)) = E((M(X))s)

In the real case (r = 1), M(X) = X.
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For any matrix x ∈ V and a given k ∈ {1, · · · ,r − 1}, define the
partitioning into blocks

x =

(
x11 x12
x21 x22

)
with x11 a k × k block, x12 = x∗21 a k × (r − k) block and x22 a
(r − k)× (r − k) block.

x1.2 = x11 − x12x−1
22 x21 and x2.1 = x22 − x21x−1

11 x12.

(Massam and Neher 1997) For x ∈ Ω, we have

det(x) = det(x11) det(x2.1)

For x ∈ Ω, we have

∆s(x) = ∆w1(x11)∆w2(x2.1),

where w1 = (s1, · · · ,sk) and w2 = (sk+1, · · · ,sr).
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Riesz distribution
Consider the Gindikin set Λ = {12,1, · · · ,(r−1)

2 } ∪ ((r−1)
2 , +∞).

For p ∈ Λ it is well known (Gindikin, 1964) that there exists a
positive measure µp on Ω such that the Laplace transform of µp

exists for −θ ∈ Ω and is equal to

Lµp(θ) =
∫
Ωr

e〈θ,x〉µp(dx) = (det(−θ))−p.

We introduce the set Ξ of elements s = (s1, · · · ,sr) of Rr defined
as follows: For a real number u ≥ 0, we put

ε(u) = 0 if u = 0,

ε(u) = 1 if u > 0.

For u1,u2, · · · ,ur ≥ 0, we define

s1 = u1,

sk = uk +
d

2
(ε(u1) + · · ·+ ε(uk−1)), 2 ≤ k ≤ r.
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Theorem 1. There exists a positive measure Rs on V such that
the Laplace transform is defined on −Ωr and is equal to

LRs(θ) = ∆s(−θ−1)

if and only if s is in Ξ.

Proposition 2. Let s ∈ Ξ. The Riesz measure Rs is in M(V ) if
and only if s1 6= 0.

Let s ∈ Ξ such that s1 6= 0. F (Rs) is called a Riesz N.E.F.



The Wishart on Ω, shape parameter p > r−1
2 , scale parameter σ,

Wr(p,σ)(dx) =
(detσ)p

ΓΩr(p)
e−〈σ,x〉(detx)p−r+1

2 1Ωr(x)dx,

where ΓΩ(.) is the multivariate gamma function

ΓΩ(p) = (2π)
r(r−1)

2

r∏
k=1

Γ(p−
k − 1

2
).

The absolutely continuous matrix Riesz distribution

R(s,σ)(dx) =
1

ΓΩ(s)∆s(σ−1)
e−〈σ,x〉∆s−n

r
(x)1Ω(x)dx,

where σ is in Ω, s = (s1, · · · ,sr) is in IRr such that si > (i− 1)1
2

ΓΩ(s) = (2π)
n−r
2

r∏
j=1

Γ(sj − (j − 1)
1

2
).
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The Variance function

P ∗i (x) = x22 of size i, for 1 ≤ i ≤ r.

Theorem 3. Let F (Rs) be the Riesz NEF generated by the mea-
sure Rs. Then

– MF (Rs) = Ω.

– ∀m ∈ Ω,

VF (Rs)(m) =
r∑

i=1

(sr−i+1 − sr−i)P [
1

sr−i+1
(P ∗i (m−1))−1

+
i−1∑
k=1

(
1

sr−k+1
−

1

sr−k
)(P ∗k (m−1))−1].
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Some properties.

Theorem 4. Let X be a Riesz random variable on Ωr with pa-
rameters (s,σ). Partition X and σ in blocks according to the
dimension k and r − k as

X =

(
X11 X12
X21 X22

)
σ =

(
σ11 σ12
σ21 σ22

)
.

Then

– X11 ∼ Rk(w1,σ1.2), where w1 = (s1, · · · ,sk).

– X2.1 ∼ Rr−k(w2− k
2,σ22), and is independent of X12 and X11,

where w2 = (sk+1, · · · ,sr).

– X12|X11 ∼ Nk×(r−k)

(
−{σ−1

22 σ12x11},(4L(σ22)L(x−1
11 ))−1

)
.
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Riesz inverse Gaussian distributions
The Riesz inverse Gaussian distribution on Ω is defined by

1

K(s,a,b)
exp{−(〈a,x〉+ 〈b,x−1〉)}∆

s−r+1
2

(x)1Ωr(x)dx,

where K(s,a,b) is the generalized Bessel function and (s,a,b) sa-
tisfy

b ∈ Ωr, a ∈ Ωr if si > (i−1)
2 , ∀1 ≤ i ≤ r,

b ∈ Ωr, a ∈ Ωr if −(r−i)
2 ≤ si ≤ (i−1)

2 , ∀1 ≤ i ≤ r,
b ∈ Ωr, a ∈ Ωr if si < −(r−i)

2 , ∀1 ≤ i ≤ r.

Theorem 5. Let X be a random variable in Ω with distribution
Rr(s,σ). Then the conditional distribution of X11 given X12 has a
Riesz inverse Gaussian distribution with parameters w1− r−k

2 ,2σ11
and 2P (x12)σ22, where w1 = (s1, · · · ,sk).

P (a)(x) = axa
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Riesz Dirichlet distribution
Theorem 6. Let Y1, · · · ,Yq be q independent Riesz random va-
riables with the same σ, Yj ∼ R(sj,σ), where sj = (sj

1, · · · ,sj
r) ∀1 ≤

j ≤ q. If we set S = Y1 + · · ·+ Yq and Xj = S−1(Yj), then

i) S is a Riesz random variable S ∼ R(
q∑

j=1

sj,σ) and is independent

of (X1, · · · ,Xq−1).
ii) The density of the joint distribution of (X1, · · · ,Xq−1)

ΓΩ(
q∑

j=1

sj)

q∏
j=1

ΓΩ(sj)

q−1∏
j=1

∆sj−n
r
(xj)∆sq−n

r
(e− (x1 + · · ·+ xq−1)

where xj ∈ Ω, 1 ≤ j ≤ q − 1 and e−
q−1∑
j=1

xj ∈ Ω.

12



Definition 7. The distribution of (X1, · · · ,Xq) is called the Riesz-
Dirichlet distribution on V with parameters (s1, · · · ,sq) denoted
by D(s1,···,sq).

If s
j
k = pj ; 1 ≤ k ≤ r, then D(s1,···,sq) is Wishart-Dirichlet

D(p1,···,pq).



Theorem 8. Let X = (X1, · · · ,Xq) be a Riesz-Dirichlet random
variable with distribution D(s1,···,sq). Then for all 1 ≤ k ≤ r, the
random variable (Pk(X1), · · · ,Pk(Xq)) has a Dirichlet distribution
D(s1,···,sq), where si = (si

1, · · · ,si
k), ∀1 ≤ i ≤ q.

Theorem 9. Let X = (X1, · · · ,Xq) be a Riesz-Dirichlet random
variable with distribution D(s1,···,sq), and let 1 ≤ j ≤ r−1. Setting

Sj =
q∑

l=1

(P ∗j (X−1
l ))−1, we have that

(
Sj
−1((P ∗j (X−1

1 ))−1), · · · ,Sj
−1((P ∗j (X−1

q ))−1)
)

has a Riesz-Dirichlet distribution D
(s1−(r−j)d

2,···,sq−(r−j)d
2)

, where

si = (si
r−j+1, · · · ,si

r), ∀1 ≤ i ≤ q.
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Characterization 2
Let X1, . . . ,Xq be real random variables. Then (X1, . . . ,Xq) has
a Dirichlet joint distribution with parameters (p1, . . . ,pq) if and
only if, for all positive real numbers f1, . . . ,fq,

E[(
q∑

i=1

fiXi)
−(p1+...+pq)] =

q∏
i=1

f
−pi
i . (1)

(appears in Chamayou, Letac (1994))
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P (a)(x) = axa

For a ∈ Ω, we define H(a)(x) = x + P (a
1
2)(x), x ∈ V

.

Theorem 10. Let p1, . . . ,pq be in (r−1
2 , +∞), p = p1 + . . . + pq

and let X = (X1, . . . ,Xq) be a random variable on Tq with K-
invariant distribution. Then X has the Dirichlet distribution with
parameters (p1, . . . ,pq) if and only if for all a1, . . . ,aq in Ω, we have

E[(∆(
q∑

i=1

H(ai)(Xi)))
−p] =

q∏
i=1

(∆(H(ai)(e)))
−pi. (2)
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We set ai = (fi − 1)e, we get

E[(∆(
q∑

i=1

fiXi))
−p] =

q∏
i=1

f
−rpi
i .



Beta Riesz distribution
Theorem 11. Let X and Y be two independent Riesz random
variables X ∼ R(s,σ) and Y ∼ R(s′,σ); s, s′ ∈ IRr such that
si > i−1

2 , s′i > i−1
2 for all 1 ≤ i ≤ r.

If we set V = X + Y and U = (X + Y )−1(X), then

i) V is a Riesz random variable V ∼ R(s+s′,σ) and is independent
of U

ii) The density of U with respect to the Lebesgue measure is

1

BΩr(s,s
′)
∆

s−r+1
2

(x)∆
s′−r+1

2
(er − x)1Ωr∩(er−Ωr)(x),

where BΩr(s,s
′) is the beta function defined on the symmetric

cone Ωr by

BΩr(s,s
′) =

ΓΩr(s)ΓΩr(s
′)

ΓΩr(s + s′)
.
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If X has the distribution βp1,p2, which is K-invariant, we have

E(∆s(X)) =
ΓΩ(p1 + s)

ΓΩ(p1)

ΓΩ(p1 + p2)

ΓΩ(p1 + p2 + s)
, (3)

for all s = (s1, . . . ,sr) such that si > −(p1 − i−1
2 ).

Theorem 12. Let X be a random matrix in Ω ∩ (e −Ω). Then
X is βp,q distributed, where p, q > r−1

2 , if and only if

i) The distribution of X is in A,

ii) For i ∈ {1,...,r}, the real random variable ∆ei(X) has the
distribution β

p−i−1
2 ,q

,

iii) The ∆ei(X) are independent.

(⇒) appears in Muirhead, as an exercise on the beta matrix βn
2,m2

(⇐) spherical Fourier transform
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Olkin and Rubin Theorem
Theorem 13. If U and V are r × r random symmetric positive
definite matrices which are independently distributed, then U and
V have a Wishart distribution with the same scale matrix if and
only if
* Z = U + V is independent of X = (U + V )−1(U).
* the distribution of X is K-invariant.
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Theorem 14. Let U and V be two independent random variables
valued in Ωr with strictly positive twice differentiable densities.
Set Z = U + V and X = P ((U + V )−

1
2)(U). If X and Z are

independent then their exist p,q ∈ R; p,q > (r−1)
2 , and σ ∈ Ωr

such that U ∼ Wr(p,σ) and V ∼ Wr(q,σ).
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Theorem 15. We use the division algorithm defined by the Cho-
lesky decomposition. Let X and Y be independent random va-
riables valued in Ωr with strictly positive twice differentiable den-
sities. Set V = X + Y and U = V −1(X). If U and V are inde-
pendent then there exist s, s′ ∈ IRr; si > i−1

2 , s′i > i−1
2 for all

1 ≤ i ≤ r, and σ ∈ Ωr such that X ∼ R(s,σ) and Y ∼ R(s′,σ).
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The proof of this theorem relies on the resolution of two func-
tional equations given in the following theorems which are inter-
esting in their own rights.

Theorem 16. Let a : Ω ∩ (e − Ω) −→ IR and f : Ω −→ IR be
functions such that, for any x ∈ Ω ∩ (e−Ω) and y ∈ Ω,

a(x) = f(y(x))− f(y(er − x))).

Assume that f is differentiable, then there exist p ∈ IRr and
c ∈ IR such that, for any x ∈ Ω ∩ (e−Ω) and y ∈ Ω,

a(x) = log∆p(x)− log∆p(er − x), f(y) = log∆p(y) + c.
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Theorem 17. Let a1 : Ω ∩ (e−Ω) −→ IR and a2, f : Ω −→ IR be
functions satisfying

a1(x) + a2(y) = f(y(x)) + f(y(er − x)),

for any x ∈ Ω ∩ (e − Ω) and y ∈ Ω. Assume that f is twice
differentiable then there exist p′ ∈ IRr, δ ∈ V and c1, c2, c3 ∈ IR

such that for any x ∈ Ω ∩ (e−Ω) and y ∈ Ω,

f(y) = log∆p′(y) + 〈δ,y〉+ c1

a1(x) = log∆p′(x) + log∆p′(er − x) + c2,

a2(y) = 2 log∆p′(y) + 〈δ,y〉+ c3,

where 2c1 = c2 + c3.
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