On the BLUEs in Two Linear Models via C. R. Rao’s Pandora’s Box

Nesrin Güler ¹,

Simo Puntanen ² & Halim Özdemir ³

¹Department of Statistics, Sakarya University, Sakarya, Turkey
²School of Information Sciences, University of Tampere, Finland
³Department of Mathematics, Sakarya University, Sakarya, Turkey

23rd International Workshop on Matrices and Statistics
June 08–12, 2014
Ljubljana, SLOVENIA
Outline

1. Introduction
2. Two Partitioned Linear Models With Different Covariance Matrices
3. The Equality of BLUEs Under the Full Models When They Equal Under the Submodels
4. The Equality of BLUEs Under the Full Model and the Transformed Model
5. Concluding Remarks
6. References
1. Introduction
Consider the partitioned linear model
\[y = X\beta + \varepsilon = X_1\beta_1 + X_2\beta_2 + \varepsilon, \]
denoted as
\[M = \{y, X\beta, V\} = \{y, X_1\beta_1 + X_2\beta_2, V\}, \] (1.1)

- \(y \in \mathbb{R}^{n \times 1} \) is an observable random vector with expectation \(E(y) = X\beta \) and covariance matrix \(\text{cov}(y) = V \),
- \(X \in \mathbb{R}^{n \times p} \) is a known matrix partitioned columnwise as \(X = (X_1 : X_2) \) with \(X_i \in \mathbb{R}^{n \times p_i}, i = 1, 2 \),
- \(\beta \in \mathbb{R}^{p \times 1} \) is a vector of fixed unknown parameters with \(\beta = (\beta_1' : \beta_2')' \) and \(p = p_1 + p_2 \),
- \(\varepsilon \in \mathbb{R}^{n \times 1} \) is a vector of random errors,
- \(V \in \mathbb{R}^{n \times n} \) is a known nonnegative definite matrix (nnd).
Estimability

K\beta is estimable under the model \(\mathcal{M} \) if and only if

\[
C(K') \subseteq C(X').
\]

K_1\beta_1 is estimable under \(\mathcal{M} \) if and only if

\[
K_1 = LM_2X_1
\]

for some matrix \(L \).

$X_1\beta_1$ is estimable under \mathcal{M} if and only if

$$C(X_1) \cap C(X_2) = \{0\}.$$

The best linear unbiased estimator (BLUE)

The BLUE of $\mathbf{X}\beta$ under \mathcal{M}, denoted as $\text{BLUE}(\mathbf{X}\beta \mid \mathcal{M})$, is defined to be an unbiased linear estimator \mathbf{Gy} such that its covariance matrix $\text{cov}(\mathbf{Gy})$ is minimal, in the Löwner sense, among all covariance matrices $\text{cov}(\mathbf{Fy})$ such that \mathbf{Fy} is unbiased for $\mathbf{X}\beta$.
\[\text{Gy} = \text{BLUE}(X\beta \mid \mathcal{M}) \iff G(X : VM) = (X : 0), \quad (1.2) \]

where \(M = I_n - P_X \), see, e.g., Rao (1967), Zyskind (1967), Baksalary & Trenkler (2009, 2011).

The observed value of \(\text{Gy} \) is unique wp 1 if and only if the model \(\mathcal{M} \) is consistent, i.e.,

\[y \in C(X : V) = C(X : VM) \quad (1.3) \]

holds wp 1; see, e.g., Rao (1973b, p.282), Puntanen & Styan (1990), and Baksalary, Rao & Markiewicz (1992). The corresponding consistency is assumed in all models considered in this study.
\[Ay = \text{BLUE}(K\beta \mid M) \iff A(X : VM) = (K : 0). \]

Moreover, if \(X_1\beta_1 = (X_1 : 0)\beta \) is estimable under the model \(M \), then

\[G_1 y = \text{BLUE}(X_1\beta_1 \mid M) \iff G_1(X_1 : X_2 : VM) = (X_1 : 0 : 0). \] \hspace{1cm} (1.4)
\[Gy = \text{BLUE}(X\beta \mid \mathcal{M}) \iff G(X : VM) = (X : 0) \]

Lemma (1.1)

Consider the linear model \(\mathcal{M} = \{y, X\beta, V\} \). Then \(Gy \) is the BLUE for \(X\beta \) under \(\mathcal{M} \) if and only if there exists a matrix \(L \in \mathbb{R}^{p \times n} \) such that \(G \) is solution to

\[
\Gamma_{\mathcal{M}} \begin{pmatrix} G' \\ L \end{pmatrix} = \begin{pmatrix} 0 \\ X' \end{pmatrix},
\]

(1.5)

where \(\Gamma_{\mathcal{M}} = (V \ X' \ X') \) (Rao, 1971).
\[Gy = \text{BLUE}(X\beta \mid \mathcal{M}) \iff G(X : VM) = (X : 0) \]

Lemma (1.1)

Consider the linear model \(\mathcal{M} = \{y, X\beta, V\} \). Then \(Gy \) is the BLUE for \(X\beta \) under \(\mathcal{M} \) if and only if there exists a matrix \(L \in \mathbb{R}^{p \times n} \) such that \(G \) is solution to

\[
\Gamma_{\mathcal{M}} \begin{pmatrix} G' \\ L \end{pmatrix} = \begin{pmatrix} 0 \\ X' \end{pmatrix},
\]

where \(\Gamma_{\mathcal{M}} = \begin{pmatrix} V & X' \\ X' & 0 \end{pmatrix} \) (Rao, 1971).
\[\Gamma_M \begin{pmatrix} G' \\ L \end{pmatrix} = \begin{pmatrix} V & X \\ X' & 0 \end{pmatrix} \begin{pmatrix} G' \\ L \end{pmatrix} = \begin{pmatrix} 0 \\ X' \end{pmatrix}. \quad (1.6) \]

Let
\[C_M = \begin{pmatrix} C_{1M} & C_{2M} \\ C_{3M} & -C_{4M} \end{pmatrix} = \begin{pmatrix} V & X \\ X' & 0 \end{pmatrix}^{-1}, \quad (1.7) \]

where \(C_{1M} \in \mathbb{R}^{n \times n} \) and \(C_{2M} \in \mathbb{R}^{n \times p} \). Then
\[\begin{pmatrix} G' \\ L \end{pmatrix} = \begin{pmatrix} C_{1M} & C_{2M} \\ C_{3M} & -C_{4M} \end{pmatrix} \begin{pmatrix} 0 \\ X' \end{pmatrix} = \begin{pmatrix} C_{2M}X' \\ -C_{4M}X' \end{pmatrix}. \quad (1.8) \]

and
\[Gy = XC_{2M}'y \quad (1.9) \]
\[\text{BLUE}(X\beta \mid \mathcal{M}) = X\mathbf{C}^{'}_{2\mathcal{M}}y \]

From (1.8) we see that \(X\mathbf{C}^{'}_{2\mathcal{M}}y \) is one representation for the BLUE of \(X\beta \) under \(\mathcal{M} \). Of course, if we let \(\mathbf{C}_{\mathcal{M}} \) vary through all generalized inverses of \(\mathbf{C}_{\mathcal{M}} \) we obtain all solutions to (1.6) and thereby all representations \(Gy \) for the BLUE of \(X\beta \) under \(\mathcal{M} \); see Rao & Mitra (1971, p.29).

Furthermore, as a result of some matrix operations we obtain

\[X\mathbf{C}^{'}_{2\mathcal{M}}X = X \quad \text{and} \quad X\mathbf{C}^{'}_{3\mathcal{M}}X = X, \quad \text{\quad (1.10)} \]

\[V\mathbf{C}^{'}_{2\mathcal{M}}X' = X\mathbf{C}^{'}_{2\mathcal{M}}V = V\mathbf{C}^{'}_{3\mathcal{M}}X' = X\mathbf{C}^{'}_{3\mathcal{M}}V. \quad \text{\quad (1.11)} \]
\[\text{BLUE}(X\beta \mid \mathcal{M}) = XC'_2\mathcal{M}y \]

From (1.8) we see that \(XC'_2\mathcal{M}y \) is one representation for the BLUE of \(X\beta \) under \(\mathcal{M} \). Of course, if we let \(C\mathcal{M} \) vary through all generalized inverses of \(\Gamma\mathcal{M} \) we obtain all solutions to (1.6) and thereby all representations \(Gy \) for the BLUE of \(X\beta \) under \(\mathcal{M} \); see Rao & Mitra (1971, p.29).

Furthermore, as a result of some matrix operations we obtain

\[XC'_2\mathcal{M}X = X \quad \text{and} \quad XC'_3\mathcal{M}X = X, \quad (1.10) \]

\[VC'_2\mathcal{M}X' = XC'_2\mathcal{M}V = VC'_3\mathcal{M}X' = XC'_3\mathcal{M}V. \quad (1.11) \]
As further references to the Pandora’s Box, we may mention
- Hall & Meyer (1975, Theorem 4.2) showed a property that the $C_i^\mathcal{M}$-matrices are independent of each other in the sense that if $D_{1,\mathcal{M}}$ is any $C_{1,\mathcal{M}}$-matrix and $D_{2,\mathcal{M}}$ is any $C_{2,\mathcal{M}}$-matrix etc., then the partitioned matrix composed by the $D_{i,\mathcal{M}}$-matrices is always a generalized inverse of $\Gamma^\mathcal{M}$.

For the computational aspects of the Pandora’s Box, see
Rao (1971) shows that the problem of inference from a linear model can be completely solved when one has obtained a matrix $\mathbf{C}_M \in \{\Gamma^{-}\}$ and calls that the computation of the matrix \mathbf{C}_M is like opening a Pandora’s Box, giving all that is necessary for drawing inferences on β.

We may also cite Rao (1971, p.378):

“Once a generalized inverse is computed by a suitable procedure, we seem to have a Pandora Box supplying all the ingredients needed for obtaining the BLUEs, their variances and covariances, an unbiased estimator of σ^2, and test criteria without any further computations except for a few matrix multiplications... Thus the problem of inference from a linear model is reduced to numerical problem of finding an inverse (or generalized inverse) of the symmetric matrix

$$
\begin{pmatrix}
\mathbf{V} & \mathbf{X} \\
\mathbf{X}' & 0
\end{pmatrix}^{-} =
\begin{pmatrix}
\mathbf{C}_{1M} & \mathbf{C}_{2M} \\
\mathbf{C}_{3M} & -\mathbf{C}_{4M}
\end{pmatrix}
$$

"
Rao (1971) shows that the problem of inference from a linear model can be completely solved when one has obtained a matrix $\mathbf{C}_M \in \{\mathbf{\Gamma}_M^{-1}\}$ and calls that the computation of the matrix \mathbf{C}_M is like opening a Pandora's Box, giving all that is necessary for drawing inferences on β.

We may also cite Rao (1971, p.378):

“Once a generalized inverse is computed by a suitable procedure, we seem to have a Pandora Box supplying all the ingredients needed for obtaining the BLUEs, their variances and covariances, an unbiased estimator of σ^2, and test criteria without any further computations except for a few matrix multiplications...Thus the problem of inference from a linear model is reduced to numerical problem of finding an inverse (or generalized inverse) of the symmetric matrix

$$
\begin{pmatrix}
\mathbf{V} & \mathbf{X} \\
\mathbf{X}' & 0
\end{pmatrix}^{-1} =
\begin{pmatrix}
\mathbf{C}_1 & \mathbf{C}_2 \\
\mathbf{C}_3 & -\mathbf{C}_4
\end{pmatrix}
$$

"
The main purpose of this study is to give some results related to the equivalence between the BLUEs of $X_1 \beta_1$ under two partitioned linear models

$$A = \{y, X_1 \beta_1 + X_2 \beta_2, V_A\} \quad \text{and} \quad B = \{y, X_1 \beta_1 + X_2 \beta_2, V_B\},$$

which differ only in their covariance matrices.

There are many studies related to these topics, e.g.,
- Mitra & Moore (1973),
- Rao (1973b),
- Mathew & Bhimisankaram (1983),
- Baksalary & Mathew (1986),
- Haslett (1996),
- Werner & Y apar (1996),
- Isotalo, Puntanen & Styan (2007),
- Haslett & Puntanen (2010),
The main purpose of this study is to give some results related to the equivalence between the BLUEs of \(X_1 \beta_1 \) under two partitioned linear models

\[
A = \{y, X_1 \beta_1 + X_2 \beta_2, V_A\} \quad \text{and} \quad B = \{y, X_1 \beta_1 + X_2 \beta_2, V_B\},
\]

which differ only in their covariance matrices.

There are many studies related to these topics, e.g.,

- Mitra & Moore (1973),
- Rao (1973b),
- Mathew & Bhimisankaram (1983),
- Baksalary & Mathew (1986),
- Haslett (1996),
- Werner & Yapar (1996),
- Isotalo, Puntanen & Styan (2007),
- Haslett & Puntanen (2010),
Hauke, Markiewicz & Puntanen (2012) considered the Euclidean difference between the BLUEs under \(A \) and \(B \) and in particular utilise the concept of linear sufficiency in their considerations.

Haslett & Puntanen (2010) gave a necessary and sufficient condition for the equality between the BLUEs of \(X_1\beta_1 \) under two models which have different covariance matrices. They also considered the equality of the BLUEs under the full models assuming that they are equal under the submodels.
Hauke, Markiewicz & Puntanen (2012) considered the Euclidean difference between the BLUEs under A and B and in particular utilise the concept of linear sufficiency in their considerations.

Haslett & Puntanen (2010) gave a necessary and sufficient condition for the equality between the BLUEs of $X_1\beta_1$ under two models which have different covariance matrices. They also considered the equality of the BLUEs under the full models assuming that they are equal under the submodels.

In our study, the problems studied in are reconsidered and in particular, the $C_{i\mathcal{M}}$-matrices are used to give additional new results.
Hauke, Markiewicz & Puntanen (2012) considered the Euclidean difference between the BLUEs under \mathcal{A} and \mathcal{B} and in particular utilise the concept of linear sufficiency in their considerations.

Haslett & Puntanen (2010) gave a necessary and sufficient condition for the equality between the BLUEs of $X_1\beta_1$ under two models which have different covariance matrices. They also considered the equality of the BLUEs under the full models assuming that they are equal under the submodels.

In our study, the problems studied in are reconsidered and in particular, the C_{iM}-matrices are used to give additional new results.
Furthermore, in Section 4, we briefly investigate the equality of the BLUEs of $\mathbf{F}_X\beta$ under the model \mathcal{M} and the transformed model

$$\mathcal{F} = \{\mathbf{F}_y, \mathbf{F}_X, \mathbf{F}_V\mathbf{F}'\},$$

which is obtained from premultiplying the model $\mathcal{M} = \{\mathbf{y}, \mathbf{X}\beta, \mathbf{V}\}$ by an arbitrary non-zero matrix \mathbf{F}. For example, choosing $\mathbf{F} = \mathbf{M}_2$ we obtain the reduced model

$$\{\mathbf{M}_2\mathbf{y}, \mathbf{M}_2\mathbf{X}_1\beta_1, \mathbf{M}_2\mathbf{V}\mathbf{M}_2\}.$$
Furthermore, in Section 4, we briefly investigate the equality of the BLUEs of $FX\beta$ under the model \mathcal{M} and the transformed model

$$\mathcal{F} = \{Fy, FX, FVF'\},$$

which is obtained from premultiplying the model $\mathcal{M} = \{y, X\beta, V\}$ by an arbitrary non-zero matrix F. For example, choosing $F = M_2$ we obtain the reduced model

$$\{M_2y, M_2X_1\beta_1, M_2VM_2\}.$$

Our considerations are based on the Pandora’s Box approach.
Furthermore, in Section 4, we briefly investigate the equality of the BLUEs of $\mathbf{FX}\beta$ under the model \mathcal{M} and the transformed model

$$\mathcal{F} = \{\mathbf{Fy}, \mathbf{FX}, \mathbf{FVF}'\},$$

which is obtained from premultiplying the model $\mathcal{M} = \{\mathbf{y}, \mathbf{X}\beta, \mathbf{V}\}$ by an arbitrary non-zero matrix \mathbf{F}. For example, choosing $\mathbf{F} = \mathbf{M}_2$ we obtain the reduced model

$$\{\mathbf{M}_2\mathbf{y}, \mathbf{M}_2\mathbf{X}_1\beta_1, \mathbf{M}_2\mathbf{V}\mathbf{M}_2\}.$$

Our considerations are based on the Pandora’s Box approach.
- Farebrother (1979),
- Baksalary & Kala (1981),
- Stahlecker & Schmidt (1987),
- Lucke (1991),
- Gross & Trenkler (1997),
- Gross, Trenkler & Werner (2001),
- Zhang, Liu & Lu (2004),
- Zhang (2007),
- Tian & Puntanen (2009).
2. Two Partitioned Linear Models With Different Covariance Matrices

Consider two partitioned linear models

\[
\mathcal{A} = \{\mathbf{y}, \mathbf{X}_1\mathbf{\beta}_1 + \mathbf{X}_2\mathbf{\beta}_2, \mathbf{V}_A\} \quad \text{and} \quad \mathcal{B} = \{\mathbf{y}, \mathbf{X}_1\mathbf{\beta}_1 + \mathbf{X}_2\mathbf{\beta}_2, \mathbf{V}_B\},
\]

with their submodels

\[
\mathcal{A}_i = \{\mathbf{y}, \mathbf{X}_i\mathbf{\beta}_i, \mathbf{V}_A\}, \quad \mathcal{B}_i = \{\mathbf{y}, \mathbf{X}_i\mathbf{\beta}_i, \mathbf{V}_B\}, \quad i = 1, 2,
\]

and the corresponding reduced models

\[
\mathcal{A}_r = \{\mathbf{M}_2\mathbf{y}, \mathbf{M}_2\mathbf{X}_1\mathbf{\beta}_1, \mathbf{M}_2\mathbf{V}_AM_2\},
\]

\[
\mathcal{B}_r = \{\mathbf{M}_2\mathbf{y}, \mathbf{M}_2\mathbf{X}_1\mathbf{\beta}_1, \mathbf{M}_2\mathbf{V}_BM_2\}.
\]
Suppose that every representation of \(\text{BLUE}(X_1\beta_1) \) under \(A_1 \) continues to be \(\text{BLUE}(X_1\beta_1) \) under \(B_1 \) or, in short,

\[
\{ \text{BLUE}(X_1\beta_1 \mid A_1) \} \subseteq \{ \text{BLUE}(X_1\beta_1 \mid B_1) \}.
\]

(2.5)

In matrix terms, the notation in (2.5) means that

\[
\text{G satisfies } G(X_1 : V_{A}M_1) = (X_1 : 0) \quad (2.6a)
\]

\[
\implies
\]

\[
G(X_1 : V_{B}M_1) = (X_1 : 0).
\]

(2.6b)
According to Lemma 1.1, the BLUE of $X_1\beta_1$ under A_1 can be expressed as

$$\text{BLUE}(X_1\beta_1 \mid A_1) = X_1C'_{2A_1}y,$$

(2.7)

where $C_{2A_1} \in \mathbb{R}^{n \times p_1}$ is the 12-block of the matrix

$$C_{A_1} = \begin{pmatrix} C_{1A_1} & C_{2A_1} \\ C_{3A_1} & -C_{4A_1} \end{pmatrix} = \begin{pmatrix} V_{A_1} & X_1 \\ X_1' & 0 \end{pmatrix}^{-} \in \{\Gamma_{-A_1}\},$$

(2.8)

obtained for the model A_1. Hence, \{BLUE($X_1\beta_1 \mid A_1$)\} \subseteq \{BLUE($X_1\beta_1 \mid B_1$)\} can be equivalently expressed as

$$X_1C'_{2A_1}y \text{ is BLUE for } X_1\beta_1 \text{ under } B_1 \text{ for every } C_{2A_1}.$$

(2.9)

Because $X_1C'_{2A_1}X_1 = X_1$, (2.5) is equivalent to $X_1C'_{2A_1}V_BM_1 = 0$.

In the following lemma we collect some conditions for (2.5).

Lemma (2.1)

Consider the submodels $A_1 = \{y, X_1\beta_1, V_A\}$ and $B_1 = \{y, X_1\beta_1, V_B\}$. Then the following statements are equivalent:

(a) $\{\text{BLUE}(X_1\beta_1 \mid A_1)\} \subseteq \{\text{BLUE}(X_1\beta_1 \mid B_1)\}$.

(b) $C(V_BX_1^\perp) \subseteq C(V_AX_1^\perp)$, i.e., $C(V_BM_1) \subseteq C(V_AM_1)$.

(c) $X_1C_2^{A_1}V_BM_1 = 0$ for every $C_{2A_1} \in \{(\Gamma_{A_1}^{-})_{12}\}$.

(d) $C(C_2^{A_1}V_BM_1) \subseteq C(C_2^{A_1}V_AM_1)$ for every $C_{2A_1} \in \{(\Gamma_{A_1}^{-})_{12}\}$.
Proof.

The equivalence of (a) and (b) is shown, e.g., in
- Mitra & Moore (1973, Theorem 4.1–4.2),
- Rao (1973b, p.289),
- Baksalary & Mathew (1986, Theorem 3).

The equivalence of (a) and (c) is obvious.

The inclusion (b) trivially implies (d).

Suppose that (d) holds. Then there exists a matrix K such that

$$
C'_{2A_1} V_B M_1 = C'_{2A_1} V_A M_1 K.
$$

(2.10)

Premultiplying (2.10) by X_1 gives

$$
X_1 C'_{2A_1} V_B M_1 = X_1 C'_{2A_1} V_A M_1 K = 0.
$$

(2.11)

Thus (a) is equivalent to (d).
In the following theorem, we consider the BLUEs of $X_1\beta_1$ under the full models A and B.

Theorem (2.1)

Consider the partitioned linear models $A = \{ y, X_1\beta_1 + X_2\beta_2, V_A \}$ and $B = \{ y, X_1\beta_1 + X_2\beta_2, V_B \}$ and assume that $X_1\beta_1$ is estimable under A. Then the following statements are equivalent:

(a) $\{\text{BLUE}(X_1\beta_1 \mid A)\} \subseteq \{\text{BLUE}(X_1\beta_1 \mid B)\}$.

(b) $C[M_2V_B M_2(M_2X_1)^\perp] \subseteq C[M_2V_A M_2(M_2X_1)^\perp]$.

(c) $C(M_2V_B M) \subseteq C(M_2V_A M)$.

(d) $X_1 C'_{2A_r} M_2 V_B M = 0$ for every $C_{2A_r} \in \{(\Gamma_{A_r})_{12}\}$.

(e) $C(C'_{2A_r} M_2 V_B M) \subseteq C(C'_{2A_r} M_2 V_A M)$ for every $C_{2A_r} \in \{(\Gamma_{A_r})_{12}\}$.

Here C_{2A_r} refers to the 12-block of a generalized inverse of the matrix

$$\Gamma_{A_r} = \begin{pmatrix} M_2V_A M_2 & M_2X_1 \\ X'_1M_2 & 0 \end{pmatrix}. \quad (2.12)$$
In the following theorem, we consider the BLUEs of $X_1\beta_1$ under the full models A and B.

Theorem (2.1)

Consider the partitioned linear models $A = \{y, X_1\beta_1 + X_2\beta_2, V_A\}$ and $B = \{y, X_1\beta_1 + X_2\beta_2, V_B\}$ and assume that $X_1\beta_1$ is estimable under A. Then the following statements are equivalent:

(a) $\{\text{BLUE}(X_1\beta_1 \mid A)\} \subseteq \{\text{BLUE}(X_1\beta_1 \mid B)\}$.

(b) $C[M_2V_BM_2(M_2X_1)^\perp] \subseteq C[M_2V_AM_2(M_2X_1)^\perp]$.

(c) $C(M_2V_BM) \subseteq C(M_2V_AM)$.

(d) $X_1C_{2A}^rM_2V_BM = 0$ for every $C_{2A} \in \{ (\Gamma_{A}^{-})_{12} \}$.

(e) $C(C_{2A}^rM_2V_BM) \subseteq C(C_{2A}^rM_2V_AM)$ for every $C_{2A} \in \{ (\Gamma_{A}^{-})_{12} \}$.

Here C_{2A} refers to the 12-block of a generalized inverse of the matrix

$$
\Gamma_{A} = \begin{pmatrix} M_2V_AM_2 & M_2X_1 \\ X_1^tM_2 & 0 \end{pmatrix}. \quad (2.12)
$$
Proof.

The proof for the equivalence of (a), (b) and (c) appears in

- Mathew & Bhimasankaram (1983, Theorem 2.4),
- Haslett & Puntanen (2010, Theorem 2.1),
- Puntanen, Styan & Isotalo (2011, Sec.15.6).

Notice that

\[M = I_n - P_{(x_1 : x_2)} = I_n - P_{X_2} - P_{M_2X_1} = M_2Q_{M_2X_1}. \]

\[Q_{M_2X_1} = I_n - P_{M_2X_1} \] is one choice for \((M_2X_1)\perp\).
Proof.

The proof can be based on the generalized Frisch–Waugh–Lovell theorem (Gross & Puntanen, 2000, Theorem 4), which states that every BLUE for estimable $X_1\beta_1$ under the partitioned model A remains BLUE for $X_1\beta_1$ under the reduced model A_r and vice versa. Hence the comparison of the BLUEs for $X_1\beta_1$ under the full models A and B can be considered as the corresponding problem under the reduced models A_r and B_r.

To consider (d), we know that $M_2X_1C'_{2,A_r}M_2y$ is the BLUE for $M_2X_1\beta_1$ under A_r and moreover, it is confirmed that $X_1C'_{2,A_r}M_2y$ is the BLUE for $X_1\beta_1$ under A_r. Therefore, (a) means that for every $C_{2,A_r} \in \{ (\Gamma_{A_r})_{12} \}$, $X_1C'_{2,A_r}M_2y$ continues to be the BLUE under B_r, i.e.,

$$X_1C'_{2,A_r}M_2V_BM_2Q_{M_2}X_1 = 0 \quad \text{for every } C_{2,A_r} \in \{ (\Gamma_{A_r})_{12} \}, \quad (2.13)$$

and thereby the equivalence of (a) and (d) is confirmed.

The equivalence of (a) and (e) can be concluded from Lemma 2.1. \qed
3. The Equality of BLUEs Under the Full Models When They Equal Under the Submodels

In this section, the equality of BLUE($X_1\beta_1$) under the models A and B is considered when it is assumed that the BLUEs coincide under the submodels A_1 and B_1. We will assume that

$$C(X : V_A) = C(X_1 : X_2 : V_A) = C(X_1 : V_A)$$

(3.1)

to avoid any contradictions since the models A_1 and A are considered at the same time; see Haslett & Puntanen (2010, p. 108). The assumption (3.1) means that

$$C(X_2) \subseteq C(X_1 : V_A) = C(X_1 : V_A M_1).$$

(3.2)
Let us denote $G_i y = \text{BLUE}(X_i \beta_i)$ under A, $i = 1, 2$, and $G_3 y = \text{BLUE}(X_1 \beta_1)$ under A_1, so that G_1, G_2 and G_3 are any matrices satisfying the equations

$$
\begin{pmatrix}
G_1 \\
G_2
\end{pmatrix} (X_1 : X_2 : V A M) = \begin{pmatrix}
X_1 & 0 & 0 \\
0 & X_2 & 0
\end{pmatrix},
\tag{3.3a}
$$

$$
G_3 (X_1 : V A M_1) = (X_1 : 0). \tag{3.3b}
$$
In the following lemma, we represent an updating formula for the BLUE($X_1\beta_1 \mid A$).

Lemma (3.1)

Consider the partitioned linear model A and assume that $X_1\beta_1$ is estimable, $C(X_2) \subseteq C(X_1 : V_A)$, and let the matrix W_1 be defined as $W_1 = V_A + X_1UX_1'$ such that $C(W_1) = C(X_1 : V_A)$. Then

$$X_1\tilde{\beta}_1(A) = X_1\tilde{\beta}_1(A_1) - X_1(X_1'W_1^{-1}X_1)X_1'W_1^{-1}X_2\tilde{\beta}_2(A),$$

(3.4)

where $Z = (X_1'W_1^{-1}X_1)X_1'W_1^{-1}$, or in other notation, with G_1, G_2 and G_3 being defined as in (3.3),

$$G_1y = G_3y - X_1ZG_2y \quad \text{for all } y \in C(X : V_A M),$$

(3.5)

or, equivalently, in terms of Pandora’s Box,

$$X_1\tilde{\beta}_1(A) = X_1C'_{2A_1}y - X_1C'_{2A_1}X_2\tilde{\beta}_2(A).$$

(3.6)
In the following lemma, we represent an updating formula for the BLUE\((X_1\beta_1 \mid A) \).

Lemma (3.1)

Consider the partitioned linear model \(A \) and assume that \(X_1\beta_1 \) is estimable, \(\mathcal{C}(X_2) \subseteq \mathcal{C}(X_1 : V_A) \), and let the matrix \(W_1 \) be defined as \(W_1 = V_A + X_1UX'_1 \) such that \(\mathcal{C}(W_1) = \mathcal{C}(X_1 : V_A) \). Then

\[
X_1\tilde{\beta}_1(A) = X_1\tilde{\beta}_1(A_1) - X_1(X'_1W_1^{-1}X_1)X'_1W_1^{-1}X_2\tilde{\beta}_2(A) \\
= X_1\tilde{\beta}_1(A_1) - X_1ZX_2\tilde{\beta}_2(A),
\]

(3.4)

where \(Z = (X'_1W_1^{-1}X_1)X'_1W_1^{-1} \), or in other notation, with \(G_1, G_2 \) and \(G_3 \) being defined as in (3.3),

\[
G_1y = G_3y - X_1ZG_2y \quad \text{for all } y \in \mathcal{C}(X : V_AM), \quad (3.5)
\]

or, equivalently, in terms of Pandora’s Box,

\[
X_1\tilde{\beta}_1(A) = X_1C'_{2A_1}y - X_1C'_{2A_1}X_2\tilde{\beta}_2(A). \quad (3.6)
\]
In this lemma, $\tilde{\beta}_1(\mathcal{A})$ refers to any vector Ly such that $X_1\tilde{\beta}_1 = X_1Ly$ is the BLUE for $X_1\beta_1$ under \mathcal{A}.

Parts (3.4) and (3.5) of Lemma 3.1 appear in
- Werner & Y apar (1996, Theorem 2.3),
- Haslett & Puntanen (2010, Lemma 3.1),
- Haslett (1996): in the situation when X has full column rank and $V_{\mathcal{A}}$ is positive definite.

The proof of part (3.6) of Lemma 3.1 is straightforward.
In the following theorem, we consider the equality of the BLUEs under the full models assuming that they are equal under the submodels.

Theorem (3.1)

Consider the partitioned linear models $A = \{y, X_1\beta_1 + X_2\beta_2, V_A\}$ and $B = \{y, X_1\beta_1 + X_2\beta_2, V_B\}$ and assume that $X_1\beta_1$ is estimable, $C(X_2) \subseteq C(X_1 : V_A)$, and W_1 is defined as in Lemma 4. Moreover, suppose that every representation of $X_1\beta_1$ under A_1 continues to be BLUE of $X_1\beta_1$ under B_1 and vice versa. Then the following statements are equivalent:

(a) $X_1\bar{\beta}_1(A) = X_1\bar{\beta}_1(B)$,

(b) $X'_1W_1^{-1}X_2[\bar{\beta}_2(A) - \bar{\beta}_2(B)] = 0$.

(c) $X_1C'_{2,A_1}X_2[\bar{\beta}_2(A) - \bar{\beta}_2(B)] = 0$.
In the following theorem, we consider the equality of the BLUEs under the full models assuming that they are equal under the submodels.

Theorem (3.1)

Consider the partitioned linear models $\mathcal{A} = \{y, X_1\beta_1 + X_2\beta_2, V_A\}$ and $\mathcal{B} = \{y, X_1\beta_1 + X_2\beta_2, V_B\}$ and assume that $X_1\beta_1$ is estimable, $\mathcal{C}(X_2) \subseteq \mathcal{C}(X_1 : V_A)$, and W_1 is defined as in Lemma 4. Moreover, suppose that every representation of $X_1\beta_1$ under \mathcal{A}_1 continues to be BLUE of $X_1\beta_1$ under \mathcal{B}_1 and vice versa. Then the following statements are equivalent:

(a) $X_1\tilde{\beta}_1(\mathcal{A}) = X_1\tilde{\beta}_1(\mathcal{B})$,

(b) $X'_1 W_1^{-1} X_2 [\tilde{\beta}_2(\mathcal{A}) - \tilde{\beta}_2(\mathcal{B})] = 0$.

(c) $X_1 C'_{2,A_1} X_2 [\tilde{\beta}_2(\mathcal{A}) - \tilde{\beta}_2(\mathcal{B})] = 0$.
Proof.

Haslett & Puntanen (2010, Theorem 3.1) proved the equivalence of (a) and (b). For related results, see

- Nurhonen & Puntanen (1992),
- Isotalo, Puntanen & Styan (2007): they studied whether the equality of the ordinary least squares estimator and the BLUE continues after elimination of one observation.
Proof.

To prove the equivalence of (a) and (c), we first write the decompositions

\[X_1 \tilde{\beta}_1(A) = X_1 C'_{2A_1} y - X_1 C'_{2A_1} X_2 \tilde{\beta}_2(A), \quad (3.7) \]

\[X_1 \tilde{\beta}_1(B) = X_1 C'_{2B_1} y - X_1 C'_{2B_1} X_2 \tilde{\beta}_2(B). \quad (3.8) \]

The assumption \(\{ \text{BLUE}(X_1 \beta_1 | A_1) \} = \{ \text{BLUE}(X_1 \beta_1 | B_1) \} \) indicates that \(C(V_B M_1) = C(V_A M_1) \), and hence the non-contradictory requirement under \(A \) in (3.2),

\[C(X_2) \subseteq C(X_1 : V_A M_1), \text{ yields } C(X_2) \subseteq C(X_1 : V_B M_1). \quad (3.9) \]
Proof.

Thus we have no contradictory problem in decomposition (3.8). By assumption, in (3.7)–(3.8) we have $X_1C'_{2A_1}y = X_1C'_{2B_1}y$ for all $y \in \mathcal{C}(X_1 : V_BM_1)$. It remains to show that

$$X_1C'_{2A_1}X_2 = X_1C'_{2B_1}X_2.$$ \hspace{1cm} (3.10)

In view of (3.9), there exist matrices L_1, L_2 and L_3 so that

$$X_2 = X_1L_1 + V_BM_1L_2 = X_1L_1 + V_AM_1L_3.$$ \hspace{1cm} (3.11)

Substituting (3.11) into (3.10) confirms that (3.10) indeed holds. This completes the proof.
4. The Equality of BLUEs Under the Full Model and the Transformed Model

Suppose that the matrix equation $G(X : VM) = (X : 0)$ is premultiplied by the matrix F yielding $FG(X : VM) = (FX : 0)$. This confirms that if Gy is the BLUE of $X\beta$ under $\mathcal{M} = \{y, X\beta, V\}$, then FGy is the BLUE of $FX\beta$ under \mathcal{M}. Therefore, the BLUE of $FX\beta$ under the model \mathcal{M} can be expressed as

$$\text{BLUE}(FX\beta \mid \mathcal{M}) = FXC'_{2\mathcal{M}} y. \quad (4.1)$$
Denoting

\[
C_{\mathcal{F}} = \begin{pmatrix}
C_{1,\mathcal{F}} & C_{2,\mathcal{F}} \\
C_{3,\mathcal{F}} & -C_{4,\mathcal{F}}
\end{pmatrix} \in \left\{ \begin{pmatrix} FVF' & FX \\ X'F' & 0 \end{pmatrix}^{-1} \right\} = \{ \Gamma_{\mathcal{F}}^{-} \}, \tag{4.2}
\]

we get

\[
\text{BLUE}(FX\beta \mid \mathcal{F}) = FXC'_{2,\mathcal{F}}Fy. \tag{4.3}
\]
Requesting the equality between (4.1) and (4.3) to hold for all \(y \in \mathcal{C}(X : VM) \) means that

\[
\begin{align*}
FXC_{2,F}'FX &= FXC_{2,M}'X, \\
FXC_{2,F}'FVM &= FXC_{2,M}'VM.
\end{align*}
\] (4.4a) (4.4b)

Equation (4.4a) trivially holds as each side equals \(FX \). The right-hand side of (4.4b) is the null matrix and hence the equality between (4.1) and (4.3) holds (with probability one) if and only if

\[
FXC_{2,F}'FVM = 0,
\] (4.5)

or equivalently,

\[
\mathcal{C}(VM) \subseteq \mathcal{N}(FXC_{2,F}'F).
\] (4.6)
5. Concluding Remarks

In this paper we have studied some problems related to linear statistical models using the inverse partitioned matrix (IPM) method, i.e., we are interested in C_M which is an arbitrary generalized inverse of $\Gamma_M = (V_M X\ X'_0)$, expressed as (1.7). Notice that the rank of Γ_M is

$$\text{rank}(\Gamma_M) = \text{rank}(X : V_M) + \text{rank}(X),$$

(5.1)

and therefore Γ_M is invertible if and only if X has full column rank and $\text{rank}(X : V_M) = n$.

The beauty and elegance in C_M is that once it is calculated, then, as stated by Rao (1971, p. 378), we seem to have a Pandora’s Box supplying all ingredients needed for obtain the BLUEs, their variances, and covariances, and constructing test criteria without any further computations except for a few matrix multiplications.
According to Wikipedia, Pandora’s Box is an artifact in Greek mythology, taken from the myth of Pandora’s creation in Hesiod’s *Works and Days*. The “box” was actually a large jar given to Pandora which contained all the evils of the world. Today, however, the phrase “to open Pandora’s Box” means to perform an action that may seem small or innocuous, but that turns out to have severe and far-reaching consequences. Certainly this latter interpretation fits appropriately into our considerations. A number of papers has been written on the problems presented in our paper but using different approach: our contribution lies in using the Rao’s Pandora’s technique to characterise the equality questions in two linear models.

THANK YOU VERY MUCH FOR YOUR ATTENTION!