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■ Continuous-time Markov chain (CTMC) having n states is
represented by (n× n) square matrix Q ∈ IRn×n having

q(i, j) ≥ 0 ∀i 6= j and q(i, i) = −∑j 6=i q(i, j) ∀i.

■ Initial distribution (row) vector: π0 ∈ IR1×n, where

π0 ≥ 0, π0e = 1, and e is column vector of ones.

■ Transient vector at time t ≥ 0:

πt = π0e
Qt = π0e

−Γt∑∞
k=0

(Γt)k

k!

(

I + 1
ΓQ
)k

,Γ = maxi|q(i, i)|

[Grassmann’77, Gross-Miller’84]

■ Steady-state (or limiting, long-run) vector

π = limt→∞ πt satisfies πQ = 0, πe = 1

whenever it exists; it is also stationary distribution.
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■ In Kronecker based approach [Dayar’12], Q is:

▲ represented using Kronecker products of smaller matrices
▲ never explicitly generated.

■ Implementation of transient and steady-state solvers can rest on this
compact representation, thanks to existence of:

efficient vector-Kronecker product multiplication algorithm known as
shuffle algorithm [Davio’81].

■ πt can be computed through uniformization

using vector-Kronecker product multiplications [Buchholz’94a].

■ π also needs to be computed using vector-Kronecker product multiplications
[Buchholz’99c,Stewart-Atif-Plateau’95], since direct methods based on
complete factorizations, such as Gaussian elimination, normally introduce new
nonzeros which cannot be accommodated.
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We take an algebraic view and make the assumption that MC at hand:

■ does not have unreachable states
■ is irreducible.

Kronecker (or tensor) product of two (rectangular) matrices with A = [a(iA, jA)] is

A⊗B = [a(iA, jA)B].

Or more formally, given A ∈ IRnA×mA and B ∈ IRnB×mB , A⊗B yields the
(rectangular) matrix C ∈ IRnAnB×mAmB whose entries satisfy

c(iC , jC) = a(iA, jA)b(iB, jB) with iC = iAnB + iB and jC = jAmB + jB,

(iA, jA) ∈ {0, . . . , nA − 1} × {0, . . . ,mA − 1},

(iB, jB) ∈ {0, . . . , nB − 1} × {0, . . . ,mB − 1},

where × is the Cartesian product operator.



Background (continued)

IWMS 2014 9 June 2014 – 6 / 51

■ In a 2-dimensional representation:

▲ row indices of C ∈ {0, . . . , nA − 1} × {0, . . . , nB − 1}
▲ column indices of C ∈ {0, . . . ,mA − 1} × {0, . . . ,mB − 1}.

■ Ordering of rows and columns of C is lexicographical, since

c(iC , jC) = c((iA, iB), (jA, jB)) = c(iAnB + iB, jAmB + jB).

■ Kronecker product is associative; Kronecker product of H square matrices is:

X = X(1) ⊗X(2) ⊗ · · · ⊗X(H) = ⊗H
h=1X

(h),

where

▲ X(h) ∈ IRnh×nh

▲ row/column indices of X(h) ∈ S(h) = {0, . . . , nh − 1} for h = 1, . . . , H

▲ X ∈ IRn×n with n =
∏H

h=1 nh.
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H-dimensional state space representation

■ Ordered H-dimensional tuples

i = (i1, . . . , iH) ∈ ×H
h=1S(h) and j = (j1, . . . , jH) ∈ ×H

h=1S(h)

used to represent row and column indices of X, respectively.

■ Kronecker product of H square matrices implies:

one-to-one onto mapping between an H-dimensional state space and a
one-dimensional state space that are lexicographically ordered.

■ Kronecker product can be used to define:

MCs having multi-dimensional state spaces.
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Assume that H-dimensional CTMC at hand is represented as:

Q = QO +QD, QO =
∑K

k=1

⊗H
h=1 Q

(h)
k , QD = diag(−QOe),

where

■ QO: off-diagonal part of Q (QO ≥ 0)

■ QD: diagonal part of Q (QD ≤ 0)

■ K: # of Kronecker products (or terms) forming QO

■ H: # of factors in each Kronecker product

■ Q
(h)
k ∈ IRnh×nh

Q
(h)
k ≥ 0 for k = 1, . . . ,K and h = 1, . . . , H

■ diag: diagonal matrix which has its vector argument
along its diagonal.
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■ If row/column indices of Q
(h)
k ∈ S(h) = {0, . . . , nh − 1} for k = 1, . . . ,K and

h = 1, . . . , H, then H-dimensional state space of Q is given by:

S = ×H
h=1S(h).

■ |S| = ∏H
h=1 |S(h)| = ∏H

h=1 nh = n.

■ One-dimensional value of state i ∈ S corresponding to (i1, . . . , iH),
where ih ∈ S(h) for h = 1, . . . , H, is given by:

i =
∑H

h=1 ih
∏H

l=h+1 nl.

■ We will be using one-dimensional and multi-dimensional representations of
states interchangeably.
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Space complexity

■ One needs space for:

▲ diagonal matrix QD

▲ matrices in the Kronecker representation of QO,

meaning a floating-point vector of length
∏H

h=1 nh and at most K (sparse)
floating-point matrices of order nh are stored for h = 1, . . . , H.

■ In the worst case, this amounts to a storage space of n+
∑H

h=1 nzQ(h)

floating-point values, where

nzQ(h) : sum of # of nonzeros in Q
(h)
k for k = 1, . . . ,K.

■ QD can also be expressed as a sum of Kronecker products:

QD = −∑K
k=1

⊗H
h=1 diag(Q

(h)
k e).

However, most of the time QD is precomputed and stored explicitly.
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■ At level l = 0, . . . , H, we have bl =
∏l

h=1 n
2
h and ol =

∏H
h=l+1 nh,

where bl is # of blocks at level l, ol is order of blocks at level l.

■ There are
√
bl blocks each of order ol along the diagonal of Q.

■ Block ((i1, . . . , il), (j1, . . . , jl)) of Q at level l = 0, . . . , H:

Q((i1, . . . , il), (j1, . . . , jl)) =

K
∑

k=1

(

l
∏

h=1

q
(h)
k (ih, jh)

)(

H
⊗

h=l+1

Q
(h)
k

)

+ QD((i1, . . . , il), (j1, . . . , jl))

■ QD((i1, . . . , il), (j1, . . . , jl)) is block ((i1, . . . , il), (j1, . . . , jl)) of QD.
QD((i1, . . . , il), (j1, . . . , jl)) = 0

if (i1, . . . , il) 6= (j1, . . . , jl), meaning it is off-diagonal block at level l.

■ l = 0 yields (block) Q and l = H yields scalar (block):

q((i1, . . . , iH), (j1, . . . , jH)) =
K
∑

k=1

H
∏

h=1

q
(h)
k (ih, jh) + qD((i1, . . . , iH), (j1, . . . , jH)).
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Consider the following matrices for a 3-dimensional problem
(with 2, 3, and 2 states, respectively) having 4 terms of Kronecker products:

Q
(1)
2 = Q

(1)
3 = I2 , Q

(1)
1 =

(

λ1

µ1

)

, Q
(1)
4 =

(

µ

)

,

Q
(2)
1 = Q

(2)
3 = I3 , Q

(2)
2 =







λ2

µ2 λ2

µ2






, Q

(2)
4 =







1






,

Q
(3)
1 = Q

(3)
2 = I2 , Q

(3)
3 =

(

λ3

µ3

)

, Q
(3)
4 =

(

1

)

.

Then,

Q =
∑4

k=1

⊗3
h=1 Q

(h)
k +QD.
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0
0
0

0
0
1

0
1
0

0
1
1

0
2
0

0
2
1

1
0
0

1
0
1

1
1
0

1
1
1

1
2
0

1
2
1

Q =

0 0 0
0 0 1
0 1 0
0 1 1
0 2 0
0 2 1
1 0 0
1 0 1
1 1 0
1 1 1
1 2 0
1 2 1





































∗ λ3 λ2 λ1
µ3 ∗ λ2 λ1
µ2 ∗ λ3 λ2 λ1

µ2 µ3 ∗ λ2 λ1

µ2 ∗ λ3 λ1

µ2 µ3 ∗ λ1
µ1 ∗ λ3 λ2

µ1 µ3 ∗ λ2
µ1 µ2 ∗ λ3 λ2

µ1 µ2 µ3 ∗ λ2
µ1 µ2 ∗ λ3

µ µ1 µ2 µ3 ∗





































■ # of floating-point values stored in Kronecker representation is 11 for matrices
and 12 for diagonal, thus totaling 23; whereas, it is 53 for flat representation.

■ Discrepancy between Kronecker and flat representations becomes substantial
for larger values of the state space size, n.
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At heart of all iterative solvers for sums of Kronecker products.

Left–oriented version: x′ = x
⊗H

h=1X
(h),

where X(h) ∈ IRnh×mh for h = 1, . . . , H, is based on

⊗H
h=1X

(h) =
∏H

h=1 Im1 ⊗ · · · ⊗ Imh−1
⊗X(h) ⊗ Inh+1

⊗ · · · ⊗ InH
,

or more simply

⊗H
h=1 X

(h) =
∏H

h=1

(

I∏h−1

f=1
mf

⊗X(h) ⊗ I∏H

f=h+1
nf

)

due to compatibility of Kronecker product with
matrix multiplication [Fernandes-Plateau-Stewart’98a].
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■ Left–multiplication of x ∈ IR1×
∏H

h=1
nh with

⊗H
h=1X

(h) yields

a product vector whose length ranges from m1
∏H

h=2 nh to
∏H

h=1 mh

during the course of the multiplication.

■ The hth factor of the form:

I∏h−1

f=1
mf

⊗X(h) ⊗ I∏H

f=h+1
nf

is a rectangular (
∏h−1

f=1mf

∏H
f=h nf ×∏h

f=1mf

∏H
f=h+1 nf )

block diagonal matrix having
∏h−1

f=1mf diagonal blocks each of size

(nh

∏H
f=h+1 nf ×mh

∏H
f=h+1 nf ).

■ Furthermore, each of the diagonal blocks is an (nh ×mh) block matrix,
where each subblock is a diagonal matrix of order

∏H
f=h+1 nf with a particular

entry of X(h) appearing along its diagonal
∏H

f=h+1 nf many times.
It is this feature that is used in devising the algorithm.
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Algorithm for x′ = x
⊗H

h=1X
(h)

Copy x to x′; ileft = 1; iright =
∏H

h=2 nh; nH+1 = 1;
For h = 1 to H,

basei = 0; basej = 0;
For il = 0, . . . , ileft − 1,

For ir = 0, . . . , iright − 1,
indexi = basei + ir;
For row = 0, . . . , nh − 1,

z(row) = x′(indexi); indexi = indexi + iright;

z′ = zX(h);
indexj = basej + ir;
For col = 0, . . . ,mh − 1,

x′′(indexj) = z′(col); indexj = indexj + iright;
basei = basei + nhiright; basej = basej +mhiright;

ileft = ileftmh; iright = iright/nh+1;
Copy x′′ to x′.
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Two temporary floating-point vectors, z and z′,
with lengths maxh(nh) and maxh(mh), respectively.

Two floating-point vectors, x′ and x′′,
of length maxh=0,...,H(

∏h
f=1mf

∏H
f=h+1 nf ) to compute and return the result.

Time complexity

Complexity of a vector multiplication with QO consisting of K Kronecker product
terms when mh = nh for h = 1, . . . , H is given by:

K
H
∏

h=1

nh + 2
K
∑

k=1

H
∏

h=1

nh

H
∑

f=1

nz
Q

(f)

k

/nf = K
H
∏

h=1

nh + 2
H
∏

h=1

nh

H
∑

f=1

(

K
∑

k=1

nz
Q

(f)

k

)

/ nf

= n(K + 2
H
∑

h=1

nzQ(h)/nh)

floating-point arithmetic operations [Fernandes-Plateau-Stewart’98a], where:
nz

Q
(l)
k

: # of nonzeros in Q
(l)
k for k = 1, . . . ,K and l = 1, . . . , H.
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To expedite the analysis of MCs based on Kronecker products,
3 techniques can be used to put Kronecker representation into
more favorable form before solvers take over:

■ Reordering
■ Grouping
■ Lumping

Reordering and grouping

(K,H) = (1, 1) corresponds to a flat representation.

■ As H ց 1, Kronecker representation becomes flatter,
implying increased storage requirements.

■ If K were 1, then Q could be analyzed along each dimension
independently ⇒ normally assume K > 1.

Make K as small as possible without changing H

⇒ # of terms in QO decreases, Q
(h)
k become denser.
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Reordering in MCs based on Kronecker products refers to:

1. either permuting factors of Kronecker products
2. or renumbering states in state spaces of factors.

Latter corresponds to symmetric permutation of Q
(h)
k

for k = 1, . . . ,K associated with renumbered state space S(h).

■ Reordering of both kinds can change nonzero structure of
underlying MC
⇒ can affect convergence of iterative methods

[Dayar’98].

Symmetrically permute nonzero structure of underlying MC to
more favorable form for iterative method of choice:

use nonzero structure of
∑K

k=1Q
(h)
k , which indicates how

factor h contributes to nonzero structure of QO for
h = 1, . . . , H.
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Grouping in MCs based on Kronecker products refers to
collapsing same adjacent factors in each Kronecker product. Hence:

■ factors in each Kronecker product are reduced by same number
■ state space sizes of factors are increased.

Results show that in some cases grouping may:

■ decrease number of terms in the Kronecker representation.

Group as many factors as possible given available memory
starting from highest indexed factor
⇒ flatter representation for diagonal blocks at a particular level,

which is useful in certain iterative methods.

Effects of reordering and grouping of factors of Kronecker products on
convergence and space requirements of iterative methods have been investigated
[Buchholz-Dayar’04a, Buchholz-Dayar’05, Dayar’00, Gusak-Dayar’01,
Uysal-Dayar’98], but a broad, systematic study seems to be lacking.
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Lumpability is a property possessed by some MCs which,
if conditions are met, may be used to reduce
a large state space S to a smaller state space Slumped.

Find a partitioning of S such that, when states in each
partition are lumped (or aggregated) to form a single state,
the resulting MC described by Slumped has equivalent
behavior to original chain.

We refer to two kinds of lumpability:

1. ordinary lumpability
2. exact lumpability.

Here we give definitions for CTMCs.
Equivalent definitions can be stated for DTMCs.
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Q is said to be ordinarily lumpable with respect to a partitioning S = ∪lSl and
Sl ∩ Su = ∅ for all l 6= u if for all Sl ⊂ S and all i, i

′ ∈ Sl

∑

j∈Su
q(i, j) =

∑

j∈Su
q(i

′

, j) for all Su ⊂ S.

Q is said to be exactly lumpable with respect to a partitioning S = ∪lSl and
Sl ∩ Su = ∅ for all l 6= u if for all Sl ⊂ S and all i, i

′ ∈ Sl

∑

j∈Su
q(j, i) =

∑

j∈Su
q(j, i

′

) for all Su ⊂ S.

■ Ordinary lumpability refers to a partitioning of S in which sums of transition
rates from each state in a partition to a(nother) partition are the same.

■ Exact lumpability refers to a partitioning of S in which sums of transition
rates from all states in a partition into each state of a(nother) partition are the
same.
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■ On ordinarily lumped MC, one can compute:

▲ performance measures defined over Slumped.

■ On exactly lumped MC, one can compute:

▲ steady-state performance measures defined over S
▲ transient performance measures defined over Slumped

▲ transient performance measures defined over S if states in exactly
lumpable partitions have same initial probabilities.

Since MCs satisfy row sum property rather than column sum property,
exact lumpability is more difficult to be satisfied than ordinary lumpability.
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■ Lumpability can be investigated within each state space S(h) that defines the
Kronecker representation of QO for h = 1, . . . , H independently:

▲ For S(h), detection of ordinary and exact lumpability through partition
refinement [Buchholz’00b] requires a time complexity of O(nzQ(h) lognh)
and a space complexity of O(nzQ(h)).

▲ Lumped Kronecker representation may be obtained by replacing each of

S(h) and its corresponding matrices Q
(h)
k for k = 1, 2, . . . ,K with

equivalent lumped ones.

■ Lumpability can be investigated among S(h) that are replicated (or identical)
with respect to Kronecker representation of QO

[Brenner-Benoit-Fernandes-Plateau’04a]:

▲ Replication is very specific symmetry in Kronecker representation.
▲ Ordinary lumpability of replicated state spaces is shown.
▲ Performance measures of interest over Slumped can be computed.
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■ Lumpability can be investigated among S(h) by considering matrix properties
in Kronecker representation [Gusak-Dayar-Fourneau’03ab]:

▲ Sufficient conditions that satisfy ordinary lumpability are specified by
identifying ordinarily lumpable partitionings induced by nested block
structure of Kronecker representation.

▲ Enables detection of ordinarily lumpable partitionings in which blocks are
composed of multiple (non-identical) state spaces but individual state
spaces cannot be lumped by themselves.

▲ An iterative steady-state solution method which is able to compute
performance measures over S is given for CTMCs and DTMCs.

Neither of the last two approaches:

■ are completely automated
■ use a Kronecker representation for the lumped MC
■ possess a proper complexity analysis.
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Consider splitting smaller matrices that form Kronecker products
as in [Uysal-Dayar’98]:

Q
(h)
k = D

(h)
k + U

(h)
k + L

(h)
k

for k = 1, . . . ,K and h = 1, . . . , H,

where

D
(h)
k : diagonal part of Q

(h)
k

U
(h)
k : strictly upper-triangular part of Q

(h)
k

L
(h)
k : strictly lower-triangular part of Q

(h)
k .

Observe that:

D
(h)
k ≥ 0, U

(h)
k ≥ 0, L

(h)
k ≥ 0

since Q
(h)
k ≥ 0.
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Then using Lemma A.8 in [Uysal-Dayar’98], which rests on:

■ associativity of Kronecker product
■ distributivity of Kronecker product over matrix addition,

it is possible to express QO of Q at level l = 0, . . . , H as

QO = QU(l) +QL(l) +QDU(l) +QDL(l),

where

QU(l) =
∑K

k=1

∑l
h=1

(

⊗h−1
f=1D

(f)
k

)

⊗ U
(h)
k ⊗

(

⊗H
f=h+1Q

(f)
k

)

QL(l) =
∑K

k=1

∑l
h=1

(

⊗h−1
f=1D

(f)
k

)

⊗ L
(h)
k ⊗

(

⊗H
f=h+1Q

(f)
k

)

correspond respectively to strictly block upper- and lower-triangular parts of QO

at level l.
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QDU(l) =
∑K

k=1

∑H
h=l+1

(

⊗h−1
f=1D

(f)
k

)

⊗ U
(h)
k ⊗

(

⊗H
f=h+1Q

(f)
k

)

QDL(l) =
∑K

k=1

∑H
h=l+1

(

⊗h−1
f=1D

(f)
k

)

⊗ L
(h)
k ⊗

(

⊗H
f=h+1Q

(f)
k

)

correspond respectively to strictly upper- and lower-triangular parts of block

diagonal of QO at level l. Observe that:

QU(l) ≥ 0, QL(l) ≥ 0, QDU(l) ≥ 0, QDL(l) ≥ 0.

l = 0 ⇒ QO is a single block with QU(0) = QL(0) = 0

l = H ⇒ a point-wise partitioning of QO

with QDU(H) = QDL(H) = 0.

Hence, for iterative methods based on block partitionings l = 1, . . . , H − 1 should
be used.
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Consider block partitioning of the 3-dimensional problem at level 1 for which:

■ l = 1
■ b1 = 4
■ Q is viewed as (2× 2) block matrix with blocks of order o1 = 6.

QU(1) =
4
∑

k=1

U
(1)
k ⊗Q

(2)
k ⊗Q

(3)
k and QL(1) =

4
∑

k=1

L
(1)
k ⊗Q

(2)
k ⊗Q

(3)
k ,

QU(1) + QL(1) =





















λ1
λ1

λ1
λ1

λ1
λ1

µ1
µ1

µ1
µ1

µ1
µ µ1





















.
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The strictly upper- and lower-triangular parts of the block diagonal are given by:

QDU(1) =
4
∑

k=1

D
(1)
k ⊗ U

(2)
k ⊗Q

(3)
k +

4
∑

k=1

D
(1)
k ⊗D

(2)
k ⊗ U

(3)
k ,

QDL(1) =
4
∑

k=1

D
(1)
k ⊗ L

(2)
k ⊗Q

(3)
k +

4
∑

k=1

D
(1)
k ⊗D

(2)
k ⊗ L

(3)
k .

There are
√
b1 = 2 blocks along the diagonal:

QDU(1) + QDL(1) =





















λ3 λ2
µ3 λ2
µ2 λ3 λ2

µ2 µ3 λ2
µ2 λ3

µ2 µ3

λ3 λ2
µ3 λ2
µ2 λ3 λ2

µ2 µ3 λ2
µ2 λ3

µ2 µ3





















.



Block iterative methods for Kronecker products

IWMS 2014 9 June 2014 – 31 / 51

Let Q be irreducible and split at level l as:

Q = QO +QD = QU(l) +QL(l) +QDU(l) +QDL(l) +QD = M −N,

where M is nonsingular (i.e., M−1 exists).
Then:

■ power
■ block Jacobi over-relaxation (BJOR)
■ block successive over-relaxation (BSOR)

methods are based on different splittings of Q, and each satisfies

π(m+1)M = π(m)N for m = 0, 1, . . .

with sequence of approximations π(m+1) to π, where

■ π(0) > 0 is initial approximation such that π(0)e = 1
■ T = NM−1 is iteration matrix.
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Splittings corresponding to power, BJOR, and (forward) BSOR methods are:

MPower = −αI

NPower = −α(I +Q/α)

MBJOR = (QD +QDU(l) +QDL(l))/ω

NBJOR = (1− ω)(QD +QDU(l) +QDL(l))/ω −QU(l) −QL(l)

MBSOR = (QD +QDU(l) +QDL(l))/ω +QU(l)

NBSOR = (1− ω)(QD +QDU(l) +QDL(l))/ω −QL(l),

where

α ∈ [maxs∈S |qD(s, s)|,∞): uniformization parameter of Power
ω ∈ (0, 2): relaxation parameter of BJOR and BSOR.



Block iterative methods for Kronecker products (continued)

IWMS 2014 9 June 2014 – 33 / 51

Point versus block methods

■ Power works at level l = H since it is point method
■ BJOR and BSOR reduce to block Jacobi (BJacobi) and block Gauss-Seidel

(BGS) for ω = 1
■ BJOR and BSOR become (point) JOR and (point) SOR for l = H.

Convergence

■ Since Q is singular and assumed to be irreducible, ρ(T ) = 1.
■ In order to ensure convergence,

T should not have other eigenvalues with magnitude one.
■ For converging approximations, magnitude of eigenvalue of T closest to one

determines rate of convergence.

Power

π(m+1) = π(m) + π(m)QD/α+ π(m)QO/α.
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BJOR

π(m+1)(QD +QDU(l) +QDL(l)) =
(1−ω)π(m)QD+(1−ω)π(m)QDU(l)+(1−ω)π(m)QDL(l)−ωπ(m)QU(l)−ωπ(m)QL(l).

√
bl independent, ns linear systems each of order ol and nonzero right-hand side

■ If there is space:

▲ Generate and factorize in sparse storage ns blocks:

Q((i1, . . . , il), (i1, . . . , il)) =
∑K

k=1

(

∏l

h=1 q
(h)
k (ih, ih)

)(

⊗H

h=l+1 Q
(h)
k

)

+ QD((i1, . . . , il), (i1, . . . , il)) for (i1, . . . , il) ∈ ×l
h=1S(h)

along the diagonal of (QD +QDU(l) +QDL(l)) at outset.

▲ Solve the | ×l
h=1 S(h)| = √

bl systems directly at each iteration.

■ Otherwise, use (block) iterative method, such as BJOR,
since off-diagonal parts of diagonal blocks given by
∑K

k=1

(

∏l
h=1 q

(h)
k (ih, ih)

) (

⊗H
h=l+1Q

(h)
k

)

are sums of Kronecker products.
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BSOR

π(m+1)(QD +QDU(l) +QDL(l) + ωQU(l)) =
(1− ω)π(m)QD + (1− ω)π(m)QDU(l) + (1− ω)π(m)QDL(l) − ωπ(m)QL(l).

Block upper-triangular linear system with
√
bl blocks of order ol along diagonal of

ns coefficient matrix (QD +QDU(l) +QDL(l) + ωQU(l)) and nonzero right-hand
side.

■ Recursive algorithm is given for ns linear system with lower-triangular
coefficient matrix in the form of sum of Kronecker products and nonzero
right-hand side [Uysal-Dayar’98]. Such a system arises in backward SOR.
A version of the same algorithm for backward BSOR is also discussed.

■ Nonrecursive block upper-triangular solution algorithm for BSOR is also
possible [Buchholz-Dayar’04a] and block row-oriented version is preferable.
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Algorithm for nonrecursive block upper-triangular solution at level l

b = (1− ω)π(m)QD + (1− ω)π(m)QDU(l) + (1− ω)π(m)QDL(l) − ωπ(m)QL(l);

For row of blocks (i1, . . . , il) = (0, . . . , 0) to (n1 − 1, . . . , nl − 1) lexicographically,
Solve π(m+1)((i1, . . . , il))Q((i1, . . . , il), (i1, . . . , il)) = b((i1, . . . , il));

For column of blocks (j1, . . . , jl) > (i1, . . . , il),
b((j1, . . . , jl)) = b((j1, . . . , jl))

−ωπ(m+1)((i1, . . . , il))QU(l)((i1, . . . , il), (j1, . . . , jl)).

■ In BSOR, ns diagonal blocks Q((i1, . . . , il), (i1, . . . , il)) must be solved
in lexicographical order.

■ After each block is solved for unknown subvector π(m+1)((i1, . . . , il)),
b is updated by multiplying computed subvector with corresponding
row of blocks above diagonal.

■ BSOR at level l reduces to SOR if QDL(l) = 0.
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■ Block iterative solvers, sometimes called two-level iterative solvers, have still not been
incorporated into most analysis packages based on Kronecker representations although
they are shown to be more effective than point solvers on many test cases
[Buchholz-Dayar’04a, Uysal-Dayar’98].

■ To the contrary of block partitionings considered for sparse MCs [Dayar-Stewart’00],
block partitionings of Kronecker products are nested and recursive due to
lexicographical ordering of states. Hence, there tends to be more common structure
among diagonal blocks of a MC expressed as sum of Kronecker products.

▲ Diagonal blocks having identical off-diagonal parts and diagonals which differ by
multiple of identity can share and work with factorization of only one diagonal
block [Buchholz-Dayar’04a]. This saves not only from time spent for factorization
of diagonal blocks at the outset, but also from space.

▲ Three-level version of BSOR can be considered for MCs based on Kronecker
products in which diagonal blocks that are too large to be factorized are solved
using BSOR [Buchholz-Dayar’04a, Gusak-Dayar’01].

■ One can alter nonzero structure of underlying MC of Kronecker representation by
reordering factors and states of factors so as to make it more suitable for block
iterative methods. Power and JOR methods will not benefit from such reordering.
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■ Aggregation-disaggregation steps are coupled with various
iterative methods for MCs based on Kronecker products to
accelerate convergence [Buchholz’94a, Buchholz’99bce].

■ Iterative aggregation-disaggregation (IAD) method for MCs
based on Kronecker products and its adaptive version,
which analyzes aggregated systems for those parts
where error is estimated to be high,
are proposed [Buchholz’97, Buchholz’99a].

■ Adaptive IAD method is improved
through recursive definition and called multilevel (ML)
[Buchholz’00a].
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Let:

■ S(l) = ×H
h=l+1S(h) for l = 0, . . . , H

■ mapping f(l) : S(l) −→ S(l+1) represent aggregation of

dimension (l + 1) (i.e., the state space S(l+1)) so that
states in S(l) are mapped to states in S(l+1); note:

▲ S(0) = S
▲ S(H) = {1}.

■ aggregated CTMCs Q̃(m,l) with state spaces S(l) be defined

at levels l = 1, . . . , H with Q̃(m,0) = Q for iteration m
■ Power be used as smoother (or accelerator):

▲ η(m,l) times before aggregation
▲ ν(m,l) times after disaggregation

with α(m,l) ∈ [maxi(l)∈S(l)
|q̃(m,l)(i(l), i(l))|,∞) at level l for

iteration m.
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Then ML iteration matrix at level l for iteration m is given by:

TML
(m,l) = (I + Q̃(m,l)/α(m,l))

η(m,l)R(l)T
ML
(m,l+1)Px(m,l)

(I + Q̃(m,l)/α(m,l))
ν(m,l)

and satisfies π(m+1,l) = π(m,l)T
ML
(m,l) for m = 0, 1, . . . , where

x(m,l) = π(m,l)(I + Q̃(m,l)/α(m,l))
η(m,l)

r(l)(i(l), i(l+1)) =

{

1 if f(l)(i(l)) = i(l+1)

0 otherwise
for i(l) ∈ S(l) and i(l+1) ∈ S(l+1)

px(m,l)
(i(l+1), i(l)) =







x(m,l)(i(l))
∑

i(l)∈S(l),f(l)(i(l))=i(l+1)
x(m,l)(i(l))

if f(l)(i(l)) = i(l+1)

0 otherwise

for i(l+1) ∈ S(l+1) and i(l) ∈ S(l),
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π(m,l+1) = x(m,l)R(l) and Q̃(m,l+1) = Px(m,l)
Q̃(m,l)R(l).

At iteration m, recursion ends and backtracking starts when:

■ Q̃(m,l+1) is the last aggregated CTMC and solved exactly to give

T(m,l+1) = eπ(m+1,l+1),

where π(m+1,l+1)Q̃(m,l+1) = 0 and π(m+1,l+1)e = 1.

Level to end recursion depends on available memory
since there must be space to store and factorize Q̃(m,l+1) at that level.

When π(0,0) > 0:

■ aggregated CTMCs Q̃(m,l+1) are irreducible [Buchholz’00a]
■ ML method has been observed to converge if a sufficient number of

smoothings are performed to improve π(m,l) at each level.
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To the contrary of block iterative methods, ML iteration matrix changes from
iteration to iteration ⇒ method is non-stationary.

■ (|S(l)| × |S(l+1)|) aggregation operator, R(l), is:

▲ constant
▲ need not be stored since it is defined by f(l).

■ At level l, |S(l)| =
∏H

h=l+1 nl states represented by (H − l)-tuples are mapped

to the |S(l+1)| =
∏H

h=l+2 nl states represented by (H − l − 1)-tuples by

aggregating the leading dimension S(l+1) in S(l).

▲ Corresponds to aggregation based on contiguous and non-interleaved
block partitioning if states in S(l) were ordered anti-lexicographically.

■ (|S(l+1)| × |S(l)|) disaggregation operator, Px(m,l)
:

▲ depends on x(m,l)

▲ has the nonzero structure of RT
(l).



A simple multilevel method for Kronecker products (continued)

IWMS 2014 9 June 2014 – 43 / 51

■ Px(m,l)
can be stored in a vector of length |S(l)| since it has one nonzero per

column by definition.

■ These vectors amount to total storage of
∑H−1

l=0

∏H
h=l+1 nh floating-point

values if recursion terminates at level H.

Q̃(m,l+1) can be expressed as a sum of Kronecker products [Buchholz’00a] using:

■ at most K vectors of length |S(l+1)|
■ matrices corresponding to factors (l + 2) through H.

Element i(l+1) of vector corresponding to kth term in Kronecker representation at
level (l + 1) for iteration m is:

a(m,l+1),k(i(l+1)) =

(

∑

j(l)∈S(l),f(l)(j(l))=i(l+1)
x(m,l)(j(l)) a(m,l),k(j(l)) (e

T
j(l)(l+1)Q

(l+1)
k e)

)

π(m,l+1)(i(l+1))

for i(l+1) ∈ S(l+1) and k = 1, . . . ,K,

where a(m,0),k = e, j(l)(l + 1) ∈ S(l+1), and ej(l)(l+1) is j(l)(l + 1)st column of I.
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Q̃(m,l+1) =
∑K

k=1 diag(a(m,l+1),k)
⊗H

h=l+2Q
(h)
k −∑K

k=1 diag(a(m,l+1),k)
⊗H

h=l+2 diag(Q
(h)
k e)

■ Second summation returns diagonal matrix which sums rows of Q̃(m,l+1) to 0.
■ No need to store a(m,0),k = e for k = 1, . . . ,K at level 0.

■ If recursion ends at level H, then Q̃(m,H) is (1× 1) CTMC equal to 0, and
need not be stored since its steady-state vector is 1.

No need to store a(m,l+1),k = e for those k which:

■ either have single Q
(h)
k 6= I for h = 1, . . . , H,

■ or have all Q
(h)
k = I for h = l + 2, . . . , H.

K vectors at particular level have same length,
but vary in length from

∏H
h=2 nh at level 1 to nH at level (H − 1),

implying a storage requirement of at most K
∑H−1

l=1

∏H
h=l+1 nh floating-point

values to facilitate the Kronecker representation of the aggregated CTMCs.

Grouping of factors will further reduce storage requirement for vectors.
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Consider the 3-dimensional problem with the parameter set
(λ1, λ2, λ3, µ1, µ2, µ3, µ) = (1, 2, 3, 2, 4, 6, 10), π(0,0) = e/12,
α(0,0) = 22, and η(0,0) = ν(0,0) = 1.

Then, x(0,0) = π(0,0)(I + Q̃(0,0)/22) yields

x(0,0) = (19 11 13 10 12 9 13 10 12 9 11 3)/132

0
0

0
1

1
0

1
1

2
0

2
1

R(0) =

0 0 0
0 0 1
0 1 0
0 1 1
0 2 0
0 2 1
1 0 0
1 0 1
1 1 0
1 1 1
1 2 0
1 2 1





















1
1

1
1

1
1

1
1

1
1

1
1




















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0

0

0

0

0

1

0

1

0

0

1

1

0

2

0

0

2

1

1

0

0

1

0

1

1

1

0

1

1

1

1

2

0

1

2

1

P~x(0,0)
=

0 0

0 1

1 0

1 1

2 0

2 1





















19
32

13
32

11
21

10
21

13
25

12
25

10
19

9
19

12
23

11
23

3
4

1
4





















■ 12 states represented by 3-tuples in S(0) = S are mapped to
6 states represented by 2-tuples in S(1).

■ For instance, states (0, 0, 0) and (1, 0, 0) are mapped to (0, 0),
whereas states (0, 0, 1) and (1, 0, 1) are mapped to (0, 1).
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Using R(0), we obtain starting approximation at level 1 as

π(0,1) = (32 21 25 19 23 12)/132.

4 vectors used to represent aggregated CTMC at level 1 are computed as

a(0,1),1 = (45/32 31/21 37/25 28/19 34/23 5/4),

a(0,1),2 = a(0,1),3 = e,

a(0,1),4 = (65/16 100/21 24/5 90/19 110/23 5/2).

and aggregated CTMC is expressed as

Q̃0,1 = Px(0,0)
Q̃(0,0)R(0)

=
4
∑

k=1

diag(a(0,1),k)
3
⊗

h=2

Q
(h)
k −

4
∑

k=1

diag(a(0,1),k)
3
⊗

h=2

diag(Q
(h)
k e).
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We may very well set a(0,1),1 = e as suggested before, because effect of a(0,1),1
in first term of first summation will be to diagonal of Q̃0,1

(since Q
(2)
1 = Q

(3)
1 = I), but this effect will be cancelled by first term of second

summation (since diag(Q
(2)
1 e) = diag(Q

(3)
1 e) = I). Hence:

0

0

0

1

1

0

1

1

2

0

2

1

Q̃(0,1) =

0 0

0 1

1 0

1 1

2 0

2 1















−5 3 2

6 −8 2

4 −9 3 2

4 6 −12 2

4 −7 3
5
2

4 6 −

25
2















.
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ML method discussed follows a V-cycle at each iteration and
uses Power as smoother.

■ State spaces S(h) are aggregated according to fixed ordering
h = 1, 2, . . . , H.

■ To the contrary of ML method for sparse MCs
[Horton-Leutenegger’94]:

▲ definition of aggregated state spaces follows naturally
from Kronecker representation

▲ aggregated CTMCs can also be represented using
Kronecker products.

Class of ML methods in [Buchholz-Dayar’04b] are:

■ capable of using JOR and SOR as smoothers
■ performing W- and F-cycles inspired by multigrid
■ aggregating state spaces in cyclic and adaptive orderings.
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Numerical experiments proved ML methods to be very strong, robust, and scalable
solvers for MCs based on Kronecker products.

■ Convergence properties of ML methods are discussed in [Buchholz-Dayar’07].
■ It is not clear how behavior would be affected if block iterative methods are

used as smoothers.

BJOR and BSOR should normally not use a direct method for the solution
of diagonal blocks when employed as smoothers with ML method, since
aggregated CTMC at each level changes from iteration to iteration and
factorization may be too time consuming to offset.

Efficient algorithm that finds nearly completely decomposable (NCD) partitioning
of S for user specified decomposability parameter is given
[Gusak-Dayar-Fourneau’01]. Since IAD using NCD partitionings has certain rate of
convergence guarantees, the algorithm may be useful in the context of ML
methods to determine loosely coupled dimensions to be aggregated first in given
iteration.
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■ MCs based on Kronecker products have rich structure, which is
nested and recursive.

■ Preprocessing techniques that take advantage of this rich structure
to expedite analysis are:

▲ reordering
▲ grouping
▲ lumping.

■ Software packages working with Kronecker products should include:

▲ block iterative methods based on splittings
▲ multilevel methods

■ Implementation requires intricate programming with
dynamically allocated, relatively complex data structures,
needing time, careful testing, and tuning.
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