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Shrinkage Estimators: Ridge and Liu

@ Classical linear regression model is defined as:

y=XB+¢e, E(c)=0,Cov(e)=c?l (1)
o OLS estimator of coefficients are 3 = (XTX)1XTy.
@ OLS estimator for nearly collinear data (X7 X is ill-conditioned) is
very unreliable with very high variance.
e Small perturbations in data change everything!
@ Multicollinearity between the predictors: shrinkage estimators
@ The most popular shrinkage estimator is the ridge regression

estimator which is defined by (Hoerl and Kennard, 1970)
Bk)=(XTX + k)7 XTy

where k > 0 is the tuning (biasing) parameter.
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Ridge Regression

Ridge regression is like least squares but shrinks the estimated coefficients

towards zero. Given a response vector y € R and a predictor matrix
X € R"™P, the ridge regression coefficients are defined as

~

P
Bk) = argmin > (y; = x7 B + k> B}
j=1

BERP

- 2 2
=argmin |ly — XB5 +k |8l
BERP e et ~——
Loss Penalty

Here k > 0 is a tuning parameter which controls the strength of the
penalty term. Note that
o For k =0, we get the OLS estimate
o For k = oo, we get 3(k) =0
@ For k in between 0 and oo, model fit and amount of shrinkage are
balanced



More of Ridge

@ The canonical form of model (1) is:
Let A and T be the matrices of eigenvalues and eigenvectors of X T X

y=XTT ' B+e=2Zy+¢

where Z=XT,y=T"pand ZTZ = A,
TTXTXT = A = diag(\1, M2, . ... ,Ap), Aj is the ith eigenvalue of
XTX

@ The ridge resression estimator for the canonical model is:

Blk) = (A+ k) *AB

-~

B(k)i = ,\+k

@ This illustrates the essential feature of ridge regression: shrinkage

B, i=1,....p
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Bias and Variance of Ridge Regression

Theorem

For any design matrix X, the quantity A+ Al is always invertible, thus
there is always a unique solution (k).

Theorem

The variance of the ridge regression estimate is: Var(ﬁ (k)i) = 020\-17’-/«)2
Theorem

The bias of the ridge regression estimate is: Bias(B(k);) = —/\_—’:Lk

@ The total squared bias > . Bias2(3(k);) is a monotone increasing
sequence with respect to k(amount of shrinkage) while the total

~

variance ) . Var(/3(k);) is a monotone decreasing sequence with
respect to k.



Shrinkage Estimators

Theorem

(Existence theorem)There always exists a k > 0 such that the MSE of
ﬁ(k) is always less than the MSE of 3

@ Ridge regression is a linear estimator (y = Hyiggey), with

Hrigge = X(XTX + kI)71XT
@ One may define its degrees of freedom to be tr(Hyigge)

o Furthermore one can show that dfijgze = )\’\—J’rk where \; are the
eigenvalues of X7 X.
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Effect of Multicollinearity

Let us consider two parameter simple linear regression such that
y = Bix1 + fBaxz

Correlation transformation:

X — Xtg =X _ _ > Xij
9 svn—17" n
5-2 _ Zg—l(xtf XJ) y* _ Yt_y
j o1 T T
*T * T x
«Tr | X1 X1 XS x"2| |1 r
X X" = |:X*TX*1 X*TX*2:| - |:I’ 1:|
—~ 1 1 —r ~ 1
_ T )
Var(ﬁ)—a (X X) ﬁ |:r 1 :| ,Var(ﬁ_,)— ﬁ

r 0 03 05 095 0.99
Var(Bj) |1 1.1 133 1026 50.25
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Another Shrinkage Estimator: Liu

Given a response vector y € R and a predictor matrix X € R"*P, the Liu
regression coefficients are defined as

p

B(n) =argmin > (vi—x7 B>+ > _(nBj — B)

j=1

=argmin ||y — X/6’H2 + Hng— ﬁH2
—— 2

BeERP

Loss Penalty

where B is OLS estimator. Here 0 < 7 <1 is a tuning parameter which
controls the strength of the penalty term. Note that

e For n =1, we get the OLS estimate
e For n =0, we get ridge estimate with kK =1

@ For n in between 0 and 1, model fit and amount of shrinkage are

balanced
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Another Shrinkage Estimator: Liu (Linearly Unifi

ed)

o Liu(Linearly Unified) estimator is a linear combination of ridge and

Stein-Rule estimators:

B =(XTX+ 1) XTy+nB), 0<d<1
=(XTX+ )Xy +(XTX+1)1nB

B(k) B
@ Liu estimator in canonical form is defined as (Liu,1993):

Bn) = (N + 171 (A +nl)

Theorem

The variance of the Liu regression estimate is: Var(B(n),-) =02 (§7r;\)‘)’2);
Theorem

The bias of the Liu regression estimate is: Bias(B(n);) = —%

v
TO7 56



Shrinkage Estimators

Theorem

(Existence theorem)There always exists a 0 < n <1 such that the MSE
of B(n) is always less than the MSE of 3.

@ Liu estimator is a linear estimator (y = Hj;,y), with

Hiw = X(XTX + DY +nXTX)XT

@ One may define its degrees of freedom to be tr(Hj;,).

+nAi)Ai

e Furthermore one can show that dfj;, = > a ) where \; are the

eigenvalues of X7 X.
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Semiparametric Partially Linear Models Motivation

Determinants of electricity demand

Monthly aggregated(20 cities) electricity consumption(EC) in Germany:
01.1996-08.2010
Unique physical attributes of electricity are

@ non-storability
@ uncertain and inelastic demand

@ steep supply function

Electricity providers are interested in understanding and hedging demand
fluctuations!
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Semiparametric Partially Linear Models Motivation

Determinants of electricity demand

To determine relationship between electricity consumption (EC) and
temperature we have to account for:

@ price:electricity price, gas price etc.
@ seasonal effects: monthly effects etc.
@ economic activity: income etc.

Preassumptions:

e EC and price:—
e EC and income:+

e EC and temperature:unknown
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Semiparametric Partially Linear Models Motivation
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Figure : Plot of income vs. electricity
consumption, linear fit(green),local
polynomial fit(red), 95% confidence
bands(blue).

63 64 65 6.6
|

6.2

6.1
|

Figure : Plot of relative price vs.
electricity consumption, linear

fit(green),local polynomial fit(red), 95%

confidence bands(bluge).
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Semiparametric Partially Linear Models Motivation
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Figure : Plot of temperature vs. electricity consumption, linear fit(green),local
polynomial fit(red), 95%confidence bands(black).
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Semiparametric Partially Linear Models Motivation

Semiparametric Models

@ The ordinary regression model can be written as
Y =XT8 +e. (2)

@ Assumption: The predictors are linearly related to the response.
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Semiparametric Partially Linear Models Motivation

Semiparametric Models

@ The ordinary regression model can be written as

Y =XT8 +e. (2)
@ Assumption: The predictors are linearly related to the response.
@ Semiparametric partially linear model is defined as
Y =X"8+f(U)+e. (3)
@ Introduced by Engle, Granger, Rice and Weiss(1986): analyzed the
relationship between temperature and electricity usage.
@ Became popular in the statistical literature due to the seminal works
of Robinson(1988) and Speckman (1988).
@ Advantages: Increased flexibility and reduced modeling bias.
@ Partially linear models alleviate the curse of dimensionality.
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Semiparametric Partially Linear Models Motivation

Nonparametric Models versus Semiparametric Models

@ Nonparametric models:

o Relax the restrictive assumptions of parametric models.

o Are too flexible to permit concise conclusions.
@ Semiparametric models:

e Are natural extensions of ordinary linear regression models with
multiple predictors and nonparametric models with several covariates.

o Retain the explanatory power of parametric models and the flexibility
of nonparametric models.
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Semiparametric Partially Linear Models Motivation

Semiparametric Partial Linear Model

@ To avoid identifiability problems we assume that a variable contained
in X is not contained also in U, and in general, that no component
of X can be mapped to any component of U.

o Stone (1985) states that the three fundamental aspects of statistical
models are flexibility, dimensionality and interpretability.

o Flexibility is the ability of the model to provide accurate fits in a wide
variety of stuations, inaccuracy here leading to bias in estimation.

o Dimensionality can be thought of in terms of the variance in
estimation, the curse of dimensionality being that the amount of data
required to avoid an acceptable large variance increases rapidly with
increasing dimensionality.

o Interpretability lies in the potantial for shedding light on the
underlying structure.
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Model and Differencing

Semiparametric partial linear model
y,-:x,-—rﬂ—i—f(u,')—l—g,', i=1,...,n (4)
in vector/matrix notation
Y =XT8+f(U)+e (5)

where y;’s are observations at u;, 0 < 1y < w < ... <u, <1,

X,-T = (Xi1, Xi2, - -+, Xip)y = (yl,...,y,,)T, X =(x1,--yXn),

f={f(u),....f(u)}", e=(e1,...,en)".
E(e|x, u) = 0, Var(e|x, u) = o2, f has bounded first derivative(f’ < L)
Differencing removes the nonparametric component (well.. almost).
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Differenced-based estimation

How does the approximation work?

mth order differencing equation (Yatchew(1997))

m m m m
Yodyi= D odxig | B+ | Do dif(uin) | + (D diei |-
j=0 Jj=0 j=0 J=0

where dy, di, ..., dn are the differencing weights.

Suppose u; are equally spaced on the unit interval and f/ < L. By the
mean value theorem for some v € [uj_1, uj]

f(up) —fui—1) = fT(u;-k)(u,- —ui—1) <

For m =1 from equation (20)

S~

yi—Yi-1=(xi = xi—1)B+ f(u;) — f(ui—1) + i —€i1
1
= (x —xi—1)B+ O <n> +ei—¢€im

=~ (xi — Xj—1)B+¢ei —¢€j_1.
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Differenced-based estimation

d di do -+ dy 0 -
0 dy & d - dn O
D=1:
0 -+ -+ dy d do -
0 0 - - dy d
do,d1,...,dn are differencing weights that minimise
2
m m—k
YD didki |
k=1 \ j=1
such that . .
dj=0 and » d’=1
j=0 j=0

(6)

are satisfied. The constraints (6) ensure that the nonparametric effect is

removed as n—oo and Var(g) = Var(e) = o2

respectively.

21/56



Differencing the model

Dy = DX + Df + De =~ DX + De
G Xp e ™)

where y = Dy, X = DX and & = De.

Bp = {(DX)T(DX)} " (DX) Dy (8)
= (XTX) X7y
(Yatchew, 2003).

Yy (-PYy
7= tr{DT(I—PL)D} (9)

with P+ = X(XTX)2XT, I (p x p): identity matrix and tr(-): trace of
a matrix (Eubank et al., 1998).
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Differenced-based estimation

Differenced based Liu-type estimator

Akdeniz-Duran et.al ! proposed the difference-based Liu-type estimator
minimizing (w.r.t. [3)

L=y —XB) (¥ —XB)+ (nBp — B)" (nBp — B)

as

Bo(n) = (XTX + 17Xy + 1) (10)
where 1, 0 < n < 1 is a biasing parameter and when n =1, BD(n) = BD.

Bias{Bp(n)} = —(1 —m)(X X +1)7'8. (11)

! Akdeniz-Duran, E., Haerdle, W., Osipenko, M. (2012). Difference based ridge and
Liu type estimators in semiparametric regression models. Journal of Multivariate

Statistics
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Differenced-based estimation

Generalization of the Model

Semiparametric partial linear model for observations {y;, x;, u;j}7_;

y;:x;rﬁ+f(u;)+5;,i:1,...,n (12)

Previously we assumed E(ee ) = o2 1.

Real data often reveals heteroscedasticity and in time series context
error term exhibits autocorrelation.

o Now we assume E(ce") = 02V, V not necessarily diagonal. Thus
E(ZE") = 02Vp where Vp = DVD.

@ Generalized difference-based estimator is

B\GD = ()~<T V51)~<)_1)~<T V51)7
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EGeneralization of the Model cont'd

o Properties of the generalized difference-based estimator of 3 depends
on the characteristics of the information matrix X T VBIX =G.

@ The estimate of the 2 is
~ 1 o5 1~ o5
5% = ;(y — XBep) "V (y — XBep) (13)

It is easy to show that

1
s? =
n—p

(y_)?BGD)Tvp_l(y_)?BGD) (14)

is an unbiased estimator of o2 .
e If G(p x p), p << n— m matrix is ill-conditioned with a large

condition number, then the Sgp produces large sampling variances.
Use restricted estimation or shrinkage estimation!



Restricted estimation

Generalized Difference-based Restricted Estimator

@ The available prior information sometimes can be expressed in the
form of exact, stochastic or inequality restrictions.

@ We assumed 2 an exact linear restriction on the parameters
RB=r

R(g x p) matrix, r(q x 1) vector.
@ Thus the generalized difference-based restricted parameter estimate
is given by
Berp = Bep + GRT(RG'RT) ™ (r — RBep)
where G = )~(TV51)?.

2Akdeniz, F., Akdeniz-Duran, E., Roozbeh,M., Arashi, M. (2013). Efficiency of the
generalized difference-based Liu estimators in semiparametric regression models with
correlated errors. Journal of Statistical Computation and Simulation
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Restricted estimation

Generalized Difference-based Stochastic Restricted
Estimator

@ We do not always have exact prior information such as Rj3 = r due
to economic relations, industrial structures, production planning, etc.
@ Thus we assume a stochastic linear constraint r = RS + ¢,
€ ~ (0,0%2W) where W is assumed to be known and positive definite.

(]

Prior information are to be assigned not necessarily equal weights(w).

In order to incorporate the restrictions in the estimation of
parameters, we minimize (w.r.t. (3)

(7 — XB) Vo' (y = XB) +w(r — RB)TW(r — RB)

@ 0 < w < 1: prior information receives less weight in comparison to
the sample information

w > 1: higher weight to the prior information(of little practical
interest).



Restricted estimation

This leads to the following solution for 3:
Bepwm(w) = (G +wRTW IR HX VY + wRTWLr),
Since
(G+wR"WIR) =G —wG 'R (W +wRGIRT)'RG™!
we have generalized difference-based weighted mixed estimator as
Beowm(w) = Bep + wG T RT(W + wRGIRT) Y (r — RBep). (15)
For w = 1 we obtain the generalized difference-based mixed estimator:
Boom = (G + RTWIR) YXTV5ly + RTwp), (16)

This estimator in (16) gives equal weight to sample and prior information.
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Generalized Difference-based Liu Estimator

Generalized Difference-based Liu Estimator

(Generalized) Liu estimator proposed by Liu(1993) and Akdeniz and
Kaciranlar(1995) is defined as

Bepr(n) = (G + )HXTV5'y +nBep),0 < n <1,
= (G +1)"Y(G +nl)Bep = FyBep = F,G X Vply  (17)
where Bop = (XTV;1X)"1XT V515 is the generalized difference-based
estimator of 3 and F, = (G + 1)71(G +nl).

Observing that F,, and G~1 are commutative, we have

Bepi(n) = GLR,XT Vp'y (18)
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Generalized Difference-based Weighted Mixed Liu Estimator

We have obtained
Bepwm(w) = Bep +wG L RT(W +wRGIRT) ™ (r — RBsp).
substituting BGD(n) with EGDL(n) in B\GDWM(w), we describe a

generalized difference-based weighted mixed Liu estimator (GDWMLE),
as follows:

Beowme(w,n) = B(w,n)
— Beou(n) + wG L RT(W + wRGIRT)"(r — RBapi(n))

arranging terms we finally have
Bepwmi(w,n) = (G +wRTWLR)HFXTV5ly +wRTW™r) (19)

(Hubert and Wijekoon(2006) and Yang et.al(2009)).
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Generalized Difference-based Liu Estimator

In fact, from the definition ofﬁ(w,n) , we can see that it is a general
estimator which includes the Spwas , Spr and the mixed regression
estimator B\GDM as special cases. Namely,

if n =1 then /Q’\(w,n =1)= @\GDW/\/](w),

if w =0 then B(w = 0,7) = BepL(n). R

if n=1and w=1then f(w=1,7=1) = Bepm-
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Efficiency Properties

Lemmas

Lemma

(Farebrother, 1976) Let A be a positive definite matrix, namely A > 0,
and let o be some vector, then A— aa' > 0 if and only if a" A" v < 1.

v

Lemma

Let n x n matrices M > 0, N >0, then M > N if and only if
Amax(NM™1) < 1 (Rao,2008).

Lemma

(Trenkler and Toutenburg,1990) Let BJ = Ajy, j =1,2 be two competing
estimators of 3. Suppose that A = Cov(Bl) — COV(B\Q) > 0. Then
MSEM(B31) — MSEM(2) > 0 if and only if b] (A + byb] )" 1by < 1,
where bj denotes bias vector of B\J
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MSEM Superiority of EGDWM(w) and B(w,n) over EGD

o Expectation and dispersion matrices of the g(w,n) are

E(B(w,n)) = BAB and Var(B(w,n)) = o*BABT  (20)
e The bias of B(w,n) is

Bias(B(w,n)) = E(B(w,n)) — 6= B(F, —1)GB (21
@ The mean squared error matrix of E(w, d) is

MSEM(B(w,n)) = Var(B(w,n)) + Bias(B(w, n))Bias(B(w, d)) "
= 0?BAB + b1b] (22)

B=:(G+wRTW IR A= (F,G+wRTWR) and A=:
(F,DF," +w?RTW™IR), by = B(F,, — 1)GB.

33/56



MSEMs of the Estimators

MSEM(Bep) = Var(Bep) = 02G (23)
MSEM(Bepm) = Var(Bepm) = o2(G + RTW™IR)™ (24)
MSEM(Bepi(n)) = 02F, G~ F, + bab; , (25)

with by = Bias(Bepi(n)) = (Fy — 1)B.

MSEM(Bepwm(w)) = MSEM(B(w))
= Var(B(w)) = 0?B(G +w’RTW™IR)BT (26)
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MSEM Comparison between 3(w) and B(w, )

Theorem

The generalized difference-based weighted mixed Liu estimator g(w n) is
superior to the generalized difference-based weighted mixed estimator
B( ) in the MSEM sense, namely I\/ISEI\/I(ﬁ( )) — MSEM(3 (w n)) >0 if
and only if o=2b/ B*"1b; < 1.

v

Proof.
MSEM(B(w)) — MSEM(B(w,n)) = 0?BABT — byb]

where 0; = A\i(G) — /\i((i),-((/};i§ﬂ;r2n)2 — (1—77)(1(J/\r2(>&§$§77)’\ (%) Since
0 <n<1land A\i(G) >0, then ¢; > 0. We note that §; > 0 is monotonic
decreasing in 7. Observing that B =: (G + wRTW™IR)™1 > 0 we get
Ay >0and B* =: BA,-BAT > 0.By lemma 1, we get

MSEM(B(w)) — MSEM(3(w,n)) > 0 if and only if

o2b/ B*"1h < 1. O




MSEM Comparison between B\GDL(n) and B\(w,n)

Theorem

When Amax(NM™1) < 1, the generalized difference-based weighted mixed
Liu estimator E(w n) is superior to the generalized difference-based Liu
estimator BGDL(n) in the MSEM sense, namely

/\/ISE/\/I(BGDL( ) — I\/ISEI\/I(ﬂ( n)) > 0 if and only if
b;(02A2+b2b2) <1.

Proof.
MSEM(Bep(n)) — MSEM(B(w,n)) = 02Dy + baby — byb] .

where M = F,G1F[ N = B(F,GF," + wRTW™IR)BT and

Ay = M— N. It is obvious that, M — F,G™'F] >0,

N = B(F,GF,| + > RTW™IR)B" > 0. Therefore when

Amax(NM~ ) < 1, we get Ay > 0 by applying Lemma 2. By Lemma 3,
we have MSEI\/I(BGDL(U)) — I\/ISEI\/I(B(w,n)) > 0 if and only if

b;(o‘zAz + bzb;)_lbl <1 L]
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Efficiency Properties

Variance Comparison between B¢p and Bepwim

Theorem

The generalized difference-based weighted mixed estimator BGDWM is
superior to the generalized difference-based estimator in the sense that
Var(BGD) - Var(ﬁGDWM) >0 if and on/y if (% - 1) W+ RG_lRT > 0.

Proof.
Az = Var(Bep) — Var(Bepwm)

= 2W?BRT W1 Kz - 1> W + RG_lRT} W1RBT.
w

The difference is p05|t|ve definite when B is positive definite and
[(f — 1) W+ RG™'R ] > 0 which is positive definite as long as w < 2.

When g < p, R has full row rank, therefore RT has full column rank and
it follows that in this case we can only conclude that A; > 0. O

4
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Application 1

The data set is from a household demand for gasoline in Canada
(Yatchew(2003)). We allow price and age to appear nonparametrically:
The basic specification is given by Model:

dist = f(price, age) + B1income + Padrivers + [3hhsize
+ Bayoungsingle + Bsurban + monthly dummies + ¢

dist: log of distance traveled per month by household, price: log of price
of 1 It gasoline, age: log of age, hhsize: size of the household etc.
specification test result of joint significance of the nonparametric
variables: 5.96

order of differencing: m=10 with d=(0.9494,-0.1437,-0.1314,-0.1197,-
0.1085,-0.0978,-0.0877,-0.0782,-0.0691,-0.0606,-0.527)
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Application

Results 1

price
04 05 06 07 08 09

T T
20 20

T
a0

s0

age

&0

Figure : Ordering of data with respect to price and age

\ Diff. Liu Difference

Est. Std. Error Est. Std.Error
income | 0.287 0.021 | 0.291 0.021
drivers | 0.532 0.035 | 0.571 0.033
hhsize | 0.122 0.029 | 0.093 0.027
youngsingle | 0.198 0.063 | 0.191 0.061
urban | -0.333 0.020 | -0.332 0.020

R? 270 263

. 496 501
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Results 2

Figure : raw data graph(left), smooth graph after estimating parametric terms
with Liu estimator

Having estimated the parametric effects using GDWML estimator, the
constructed data (v: — 7: By« a0e: price:) are then smoothed to estimafe 56



Application 2: Hedonic Pricing of Housing Attributes

@ Housing prices are very much affected by location (Yatchew(2003))

@ The price surface may be unimodal, multimodal or have ridges
(prices along the subway are often higher)

@ Thus, we include a two-dimensional nonparametric effect.
@ Dataset: 92 detached homes in Ottawa.
o y(dependent variable): saleprice

o lotarea, square footage of housing, average neighbourhood income
etc. are independent variables
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Application

Results 1

Estimate Std. Error tvalue Pr(>|t|)
(Intercept)  73.9775  17.9961  4.11  0.0001
fireplac  11.7950 6.1523 1.92 0.0587
garage  11.8383 5.0793 2.33 0.0223
luxbath  60.7362 10.5148 5.78 0.0000
avginc 0.4776 0.2244 2.13 0.0364
disthwy -15.2774 6.6974 -2.28 0.0252
lotarea 3.2432 2.2766 1.42 0.1581
nrbed 6.5860 4.8962 1.35  0.1823
usespace  21.1285 10.9864 1.92 0.0580
south 7.5268 2.1505 3.50 0.0008
west  -3.2062 2.5296 -1.27 0.2086

R? 62

2
Sres

424.3

S
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Results 2

_— ]

I I I I
10 20 30 40 50 60 70

Figure : (a) Graph of location versus saleprice , (b) Local Polynomial regression
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Results 3

Estimate Std. Error tvalue Pr(>]t|)
fireplac  12.6489 5.7875 2.19 0.0316
garage  12.9252 4.9146 2.63 0.0102
luxbath  57.6187 10.5741 5.45 0.0000
avginc 0.5968 0.2342 2.55 0.0126
disthwy 1.5538 21.3877 0.07 0.9423
lotarea 3.0986 2.2387 1.38 0.1700
nrbed 6.4323 4.7490 1.35 0.1792
usespace  24.7213 10.5893 2.33 0.0220
R? .66
S5 375.5

Table : Parametric part is estimated by Liu-type regression
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Simulation Study

Simulation Design

@ Various biasing parameters are considered: n = (0,0.1,0.2,....., 1)
e Various weights w = (0.1,0.3,0.5,0.7,0.9)
@ To achieve different degrees of collinearity predictors are generated
by:
Xjj = (1—72)1/2z;j+’yzzip,i: 1,....,nj=1,...,p.

where z;; are i.i.d. normal numbers.

e v =(0.80,0.90,0.99) where correlation between two explanatory
variables are 7°

@ Dependent observations are generated by

5
yi=Y_ xibi + f(t;) + &
j=1
where 3 = (1.5,2,3,-5,4), ¢ ~ N(0,0%V) the elements of V are
vi= (3" 02 =4
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Simulation Study

Simulation Design

Nonparametric function is generated by

f(t)) = /ti(1 — t;)sin(2.17/(t; + 0.05))

where t; = (i — 0.5)/n which is called the Doppler function.

doppler(t)
-02 00 02 04

-0.4
I

0.0 0.2 0.4 0.6 0.8 1.0
t

Figure : Nonparametric part of the model

o Difficult to estimate, spatially inhomogenous function its smoothness

varies over t.
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Simulation Study

Simulation Design

@ The restriction on the parameters are taken to be
RB+e=r, e~ N(0,1)

with R =(0,1,-1,1,0) and r = 0.

@ The fourth-order optimal differencing weights for m = 4 are dy =
0.8873,d; = —0.3099, d» = —0.2464, d; = —0.1901, dy = —0.1409
(Yatchew(2003),p.61)

@ The difference (100 — 4) x 100 differencing matrix is defined as

follows:
d d d dz dg 0 --- -+ 0
0 d d d d3 do 0 --- 0
D=|: :
0 -+ -+ dy d d» - ds O

0 0 - -+ do di do d3 dy
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Simulation Study

Simulation Design

@ X and y values are ordered with respect to the nonparametric
variable.

o The matrix G = X | V51)~( has condition numbers
20.92,33.23,352.63 for v = 0.8, v = 0.9 and ~ = 0.99, respectively,
which implies the existence of multicollinearity in the data set.

e Differencing we can perform inference on 3 as if there were no
nonparametric component f in the model to begin with.
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Simulation Study

Performance criteria

The performances of the estimators are measured by

1000
SMSE(3 1000 Z HB(/) - 5”

5:(/)

1000 p
ABIAS(B) = Z Z

where () denotes the estimated parameter in the jth iteration

L | lo00 )
MSE(F(u). £(u)) = {555 2 | F(u) — ()]

i=1
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Simulation Study

Simulation Results

Table : Evaluation of the risk functions for v = 0.99 different values of w

GDE GDWME GDME GDLE GDWMLE
mse(w = 0.1) 157.66  157.66 157.17 155.80 155.80
bias(w = 0.1)  21.62 21.62 2154 21.46 21.46
mse(w = 0.3) 156.81  156.60 156.32 154.96 154.74
bias(w = 0.3)  21.65 21.62 2156 21.48 21.45
mse(w = 0.5) 156.35  156.00 155.81 15451 154.16
bias(w = 0.5)  21.53 21.48 21.44 2136 21.31

Optimum value of 7 for Liu estimator are calculated using the generalized

cross validation.
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Simulation Study

Final Considerations

@ We have proposed estimation methods for partially linear regression
framework based on difference-based method.

o Especially, the estimation of the parametric part is considered.

@ Stochastic restrictions were put on the parameter space with
specified weights.

@ The results are generalized for heteroscedastic cases.

@ The proposed estimators GDLE and GDWMLE had smaller smses for
all cases.
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Thank you.

Questions?
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